
Carnegie Mellon
Software Engineering Institute

The Team Software
Process^"^ (TSP^"^)
In Practice: A Summary
of Recent Results

Noopur Davis
Julia Mullaney

September 2003

TECHNICAL REPORT
CMU/SEI-2003-TR-014
ESC-TR-2003-014

20031202 105

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimitecl

CamegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

The Team Software Process^'^
(TSP^"^) in Practice:
A Summary of Recent Resuits

CMU/SEI-2003-TR-014
ESC-TR-2003-014

Noopur Davis
Julia Mullaney

September 2003

Software Engineering Process IVIanagement Program

Unlimited distribution subject to tl^e copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTEES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infiringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally fiinded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Acknowledgements vil

Executive Summary ix

Abstract xi

1 Introduction 1

2 TSP Overview 3
2.1 History 3
2.2 What Makes PSP and TSP Work 4
2.3 The PSP 5

2.3.1 PSP Measurement Framework 7
2.4 The TSP 8

2.4.1 The TSP Launch 9
2.4.2 TSP Measurement Framework 12
2.4.3 The TSP Introduction Strategy 12

3 TSP Results 15

4 A First-Time TSP Project 17
4.1 Data Source 17
4.2 PSP For Engineers Training Results 17

4.2.1 Time and Size Range 18
4.2.2 Time and Size Estimating Accuracy 19
4.2.3 Compile 20
4.2.4 Design Time Range 21
4.2.5 Unit Test 22
4.2.6 Productivity 23
4.2.7 Class Summary 24

4.3 The Project Results 24
4.3.1 The Launch 24
4.3.2 Plan Summary 26
4.3.3 Executing The Plan 26

4.4 First-Time TSP Team - Conclusion 32

CMU/SEI-2003-TR-014 i

5 Summarized Project Data 35
5.1 Data Source 35
5.2 Results 36

5.2.1 Schedule Deviation 36
5.2.2 Quality 37
5.2.3 Quality is Free 39
5.2.4 Comparing Summary of Results 39

5.3 Summarized Project Data - Conclusion 40

6 Anecdotes 43
6.1 Data Source 43
6.2 Anecdotal Results 43

6.2.1 Introduction Strategy 44
6.2.2 Conviction to Change 45
6.2.3 Realistic Plans/Schedule Performance 47
6.2.4 Commitment 49
6.2.5 Minimum Schedules 51
6.2.6 Barriers to Success 54
6.2.7 Problems You Had With the TSP 56
6.2.8 General Comments 57

6.3 Anecdotes - Conclusion 60

7 Conclusion 61

Appendix A: PSP Empirical Study Replication 63

Appendix B: Survey Questions 79

References 85

CMU/SEI-2003-TR-014

List of Figures

Figure 1: Elements of the PSP and the TSP 5

Figure 2: The PSP Course 6

Figures: The TSP Launch 9

Figure 4: The TSP Launch Products 11

Figure 5: TSP Introduction Timeline 13

Figures: Time and Size Range 18

Figure 7: Time and Size Estimating Error Range 19

Figure 8: Compile Defect Density and Compile Time 20

Figure 9: Design Time Range 21

Figure 10: Unit Test Defect Density and Unit Test Time 22

Figure 11: Productivity Range 23

Fiaure 12: Earned-Value Plan 26

Figure 13: Earned Value Through Week 46 28

Figure 14: Average Weekly Task Hours 29

Figure 15: Effort Distribution 30

Figure 16: Defects Removed By Phase 31

Figure 17: Average Defect Density of Delivered Software 38

Figure 18: Introduction Strategy and Timeline 44

Figure 19: Realistic PSP and TSP Plans 47

CMU/SEI-2003-TR-014 iii

Figure 20: Commitment to tlie Plan 49

Figure 21: Balanced Team Workload 51

Figure 22: Defect Removal Profile and Effort Distribution 52

Figure 23: Distribution of Class Size 64

Figure 24: Average Effort by Assignment Number 65

Figure 25: Average Size by Assignment Number 65

Figure 26: Average Productivity by Assignment Number 66

Figure 27: Average Defect Density by Assignment Number 66

Figure 28: Group Trends in Size Estimating Accuracy 68

Figure 29: Group Trend in Time Estimating Accuracy 70

Figure 30: Group Trends in Average Defect Density 71

Figure 31: Group Trends in Average Defect Density 72

Figure 32: Group Trends in Average Defect Yield 74

Figure 33: Group Trends in Productivity 76

Figure 34: PSP Usage 80

Figure 35: TSP Usage 81

Figure 36: Organization Types 82

Figure 37: Software Product Types 83

Figure 38: Project Types •• 84

iv CMU/SEI-2003-TR-014

List of Tables

Table 1: PSP Class Results 24

Table 2: Plan Summary 26

Tables: Team Status at Week 13 27

Table 4: Week 46 Status 28

Table 5: Average Weekly Task Hour Improvement 29

Table 6: Final Status 31

Table 7: Plan Vs. Actual 32

Table 8: Schedule Deviation 37

Table 9: Quality 38

Table 10: Reductions In System Test Defects and System Test Duration 39

Table 11: Improvements in Productivity and Cost Of Quality 39

Table 12: Results Comparison Between 2000 and 2003 40

Table 13: Number of Engineers Reporting Totals by Assignment Number 64

Table 14: Availability of Phase-Specific Effort by Assignment 65

Table 15: Sample Size for Each Measure 66

Table 16: Yields for Each Assignment 75

Table 17 Average Productivity 77

CMU/SEI-2003-TR-014

vi CMU/SEI-2003-TR-014

Acknowledgements

One of the principal components of the Team Software Process is building and sustaining
cohesive teams. Our team at the SEI uses the TSP, and we feel we work with a great team.
First, we must acknowledge our team leader, Jim Over. Jim gently reminds us of the com-
mitments we made during our launches and keeps us from endlessly expanding the scope of
our efforts. Jim always provides the right technical advice at the exact moment we need it.
We also thank Jim for allowing us to spend three days in Knoxville to achieve a hundred per-
cent earned value on this report. We thank Jim McHale, who always has a piece of candy
ready just when we need it most, and who never loses his sense of humor, no matter how
stressful things get. We thank Marsha Pomeroy-Huff for her editorial expertise, and no, Mar-
sha, English is not our second language. We thank Dan Burton, who provided the most com-
prehensive feedback on the draft version of this report and caused us endless hours of discus-
sions to resolve his insightful comments. We thank Anita Carleton, our data goddess, for
setting a standard we will never live up to. If there are any data not properly presented in this
report, it is entirely our fault and no reflection on Anita's comprehensive review. We thank
Alan Willett for being an all around great team member and motivator, even though he didn't
provide any feedback on this report until the very last minute. We thank Kim Campbell, who
is responsible for gathering much of the data that was the input to this report. She is a great
interface between the TSP project and the PSP/TSP community. Jodie Spielvogle best exem-
plifies being a TSP team member. She's the first one to step up and take responsibility, and
she provided invaluable support in creating this report. Last but not least, we thank Watts
Humphrey. Watts is a team member and so much more. Technically, Watts keeps our team
all focused in the same direction. He provides the constancy of purpose required to support a
long-term technology transition effort like this. He's a role model. He sets the ideal that we
all strive to meet. However, we do not reconmiend using a stopwatch to measure interrupts
when talking to your spouse; it doesn't work. But what we most admire about Watts is his
innate belief in the goodness of people; that given the opportunity, people will do the right
thing. We know this is a long paragraph, but we don't get many opportunities to thank our

team.

Very special thanks to Jeannine Siviy, who led the development and administration of the
survey on which some portions of this report are based. Jeannine also met with our commu-
nity for discussion, analyzed and organized the survey results, established the SEI TSP data
repository, worked with transition partners to understand their TSP data, and spent countless
hours on initial versions of this report. We would also like to acknowledge Ken Smith for all

his work with Jeannine.

CMU/SEI-2003-TR-014 vii

Jim Herbsleb, from the Carnegie Mellon University School of Computer Science, and Jeff
Roberts and Wai Fong Boh, from the Carnegie Mellon University Graduate School of Indus-
trial Administration, developed Appendix A of this report. We thank them for their work in
replicating the study originally conducted by Will Hayes and Jim Over in 1997, and for al-
lowing us to use the results of the replicated study in this report.

The TSP does not work without supportive management. In this, we are lucky to have Bill
Peterson, who encourages us to be a self-directed team. We also thank Bill for his review

comments of this report.

Thanks to Darryl Davis for his insightful comments on the report. It is great to have expert

advice available 24/7.

Pamela Curtis did an excellent job of providing us with editorial support. Thanks, Pamela.

Julia would like to acknowledge her father, Richard Gale, because during the throes of the

final rewrite, she forgot to call him on his birthday.

And finally, we would like to thank the TSP community of coaches, instructors, team leaders,
team members and managers. Thank you for helping us improve the method, and please
keep sending us more data and more anecdotes about your experiences with the TSP.

viii CMU/SEI-2003-TR-014

Executive Summary

Most software organizations critically need better cost and schedule management, quality
management, and cycle-time reduction. This report demonstrates that teams using the Team
Software Process (TSP) meet these critical business needs by delivering essentially defect-
free software on schedule and with better productivity.

The report starts with an overview of the TSP to provide the context for the results reported.
These results include the benefits realized by a first-time TSP team, a summary of data from
20 TSP projects in 13 organizations, and stories from people who have used the TSP.

These TSP teams delivered their products an average of 6% later than they had planned. The
schedule error for these teams ranged from 20% earlier than planned to 27% later than
planned. This compares favorably with industry data that show over half of all software pro-
jects were more than 100% late or were cancelled. These TSP teams also improved their
productivity by an average of 78%.

The teams met their schedules while producing products that had 10 to 100 times fewer de-
fects than typical software products. They delivered software products with average quality
levels of 5.2 sigma, or 60 defects per million parts (lines of code). In several instances, the
products delivered were defect free.

The TSP improves schedule and quality management by creating an environment where indi-
viduals and teams can routinely do excellent work. This report concludes with stories and
anecdotes that illustrate the personal rewards of using the TSP.

CMU/SEI-2003-TR-014 ix

CMU/SEI-2003-TR-014

Abstract

Most software organizations are facing critical business needs for better cost and schedule
management, effective quality management, and cycle-time reduction. The Team Software
Process addresses these critical business needs. This report provides results and implementa-
tion data from projects and individuals that have adopted the TSP. The results show that TSP
teams are delivering essentially defect-free software on schedule, while improving productiv-
ity. These data can be used for benchmarking and planning, motivation, lessons learned, and
other guidance to those currently using the TSP or considering its use. The report also illus-
trates adoption experiences of practitioners in the field, including TSP team members, their
managers, and their coaches and instructors.

CMU/SEI-2003-TR-014 xi

xii CMU/SEI-2003-TR-014

1 Introduction

The success of organizations that produce software-intensive systems depends on well-
managed software development processes. Implementing disciplined software methods, how-
ever, is often challenging. Organizations seem to know what they want their teams to be do-
ing, but they struggle with how to do it. The Team Software Process^"^ (TSP^'^), coupled with
the Personal Software Process™ (PSP^**^), was designed to provide both a strategy and a set
of operational procedures for using disciplined software process methods at the individual
and team levels. Organizations that have implemented the TSP and PSP have experienced
significant improvements in the quality of their software systems and reduced schedule de-
viation [Ferguson 99, Mc Andrews 00].

The purpose of this report is to provide updated results on the use of the PSP and the TSP.
The report starts with an overview of the PSP and the TSP to provide a context for the results
reported. This is followed by a detailed description of the experiences of and benefits real-
ized by a fu-st-time TSP team. Often when TSP teams report their results, those results are
met by skepticism. We hope that by walking through this first-time team's journey of using
the TSP, we illustrate how the TSP creates an environment where skilled engineers can apply
disciplined methods working on a cohesive and dedicated team. Next, we summarize the
performance of more than 20 projects from 13 organizations that have used the PSP and the
TSP. Then anecdotes from those in the PSP and TSP communities are presented to show how
individuals view the PSP and the TSP. The report concludes with an appendix presenting the
results of a study that reexamines the major hypothesis regarding the impact of the PSP on
individual engineers first presented in a 1997 technical report [Hayes 97].

Practitioners and launch coaches will find that the data in this report provide useful guidance
in implementing the TSP. For instance, the results provided can be used for benchmarking
purposes. Benchmarks can be used by teams to set team goals and to identify their strengths
and weaknesses. This report can also be used by people who are interested in using the TSP
in their organization to show their management and teams the benefits of the TSP.

^*^ Personal Software Process, PSP, Team Software Process, and TSP are service marks of Carnegie
Mellon University.

CMU/SEI-2003-TR-014

CMU/SEI-2003-TR-014

2 TSP Overview

The objective of the TSP is to create a team environment that supports disciplined individual
work and builds and maintains a self-directed team. The TSP guides self-directed teams in
addressing critical business needs of better cost and schedule management, effective quality
management, and cycle-time reduction. It defines a whole product framework of customiza-
ble processes and an introduction strategy that includes building management sponsorship,
training for managers and engineers, coaching, mentoring, and automated tool support.

The TSP can be used for all aspects of software development: requirements elicitation and
definition, design, implementation, test, and maintenance. The TSP can support multi-
disciplinary teams that range in size fi-om two engineers to over a hundred engineers. It can
be used to develop various kinds of products, ranging from real-time embedded control sys-

tems to commercial desktop client-server applications.

The TSP builds on and enables the PSP. The PSP shows engineers how to measure their
work and use that data to improve their performance. The PSP guides individual work. The
TSP guides teamwork and creates an environment in which individuals can use the PSP to
excel. Data fi-om early pilots show that the TSP has been successful in addressing critical

business needs [Ferguson 99, McAndrews 00].

2.1 History
In the 1980s, Watts Humphrey guided the development of the Capability Maturity Model® for
Software (SW-CMM®). An early misperception of SW-CMM by some people was that it did
not apply to small organizations or projects. In order to illustrate its application to small or-
ganizations, Humphrey took on the challenge to apply the SW-CMM to the smallest organi-
zation possible: an organization of a single individual. From 1989 to 1993, Humphrey wrote
more than 60 programs and more than 25,000 lines of code (LOC). In developing these 60
programs, Humphrey used all of the applicable SW-CMM practices up through Level 5. He
concluded that the management principles embodied in the SW-CMM were just as applicable
to individual software engineers. The resulting process was the PSP. He subsequently
worked on corporate and academic methods to train others to use the PSP technology.

® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

CMU/SEI-2003-TR-014

As engineers started applying their PSP skills on the job, it was soon discovered that they
needed a supportive environment that recognized and rewarded sound engineering methods.
In many organizations, the projects in crisis receive all the attention. Projects and individuals
who meet commitments and do not have quality problems often go unnoticed. Humphrey
found that if managers do not provide a supportive environment and do not ask for and con-
structively use PSP data, engineers soon stop using the PSP. Humphrey then developed the
Team Software Process to build and sustain effective teams.

2.2 What Makes PSP and TSP Work
Typical software projects are often late, over budget, of poor quality, and difficult to track.

Engineers often have unrealistic schedules dictated to them and are kept in the dark as to the

business objectives and customer needs. They are required to use imposed processes, tools,

and standards, and often take shortcuts to meet schedule pressures. Very few teams can con-
sistently be successful in this environment. As software systems get larger and more com-

plex, these problems only get worse.

The best projects are an artful balance of conflicting forces. They must consider business
needs, technical capability, and customer desires. Slighting any facet can jeopardize the suc-
cess of the project. To balance these conflicting forces, teams must understand the complete
context for their projects. This requires self-directed teams that

• understand business and product goals

• produce their own plans to address those goals

• make their own commitments

• direct their own projects

• consistently use the methods and processes that they select

• manage quality

Figure 1 illustrates how the PSP and TSP build and maintain self-directed teams. Successful
self-directed teams require skilled and capable individual team members. Capable team
members are critical because each instruction of a software module is handcrafted by an indi-
vidual software engineer. The engineer's skills, discipline, and commitment govern the qual-
ity of that module and the schedule on which that module is produced. In turn, the modules
come together to compose software products. Therefore, a software product is a team effort.
The product's modules are designed, built, integrated, tested, and maintained by a team of
software engineers whose skills, discipline, and commitment govern the success of the pro-
ject.

CMU/SEI-2003-TR-014

\TeiaiTi';;;;iSf:i-4 ^

Management

iieam communication;
j ; iTeami cb6rdinalior|;
= ;: Project:tracking:

Team
Building

Team
Member
Skills

Goal setting
Role assignment

Tailored team process
Detailed balanced plans

Process discipline
Performance measures

Estimating & planning skills
Quality management skills

0.

fi.
(0

Figure 1: Elements of the PSP and the TSP

The objective of the PSP is to put software professionals in charge of their work and to make
them feel personally responsible for the quality of the products they produce. The objectives
of the TSP are to provide a team environment that supports PSP work and to build and main-
tain a self-directed team. PSP and TSP are powerful tools that provide the necessary skills,
discipline, and commitment required for successful software projects.

2.3 The PSP
The PSP is based on the following planning and quality principles [Humphrey 00]:

• Every engineer is different; to be most effective, engineers must plan their work and they
must base their plans'on personal data.

• To consistently improve their performance, engineers must measure their work and use
their results to improve.

• To produce quality products, engineers must feel personally responsible for the quality of
their products. Superior products are not produced by accident; engineers must strive to
do quality work.

• It costs less to find and fix defects earlier in a process than later.

• It is more efficient to prevent defects than to find and fix them.

• The right way is always the fastest and cheapest way to do a job.

Today, most software engineers do not plan and track their work, nor do they measure and
manage product quality. This is not surprising, since engineers are neither trained in these
disciplines nor required to use them. The dilemma is that until they try using disciplined
methods, most software engineers do not believe that these methods will work for them.
They won't try these methods without evidence, and they can't get the evidence without try-
ing the methods. The PSP addresses this dilemma by putting an engineer in a course envi-

CMU/SEI-2003-TR-014

ronment to learn the methods. The engineers use the methods in the course and can see from
their personal and class data that the methods can and do work for them.

The PSP course is composed of ten programming assignments and five reports. The PSP
methods are introduced in six upwardly compatible steps, PSPO through PSP 2.1 (see Figure
2). The engineers write one or two programs at each step and gather and analyze data on
their work. Then they use their data and analyses to improve their work.

II
^

PSP2
•Code reviews

•Design reviews

PSP2.1 Introduces quality
Design templates management and design

PSP1
•size estimating

•Test report

PSP1.1
•Task planning

Schedule planning

PSPO
•Current process
•Basic measures

PSP0.1
•Coding standard

•Process Improvement
proposal

•Size measurement

Introduces estimating and
planning

Introduces process discipline
and measurement

Figure 2: The PSP Course

PSPO and PSPO.l. Engineers write three programming assignments using PSPO and PSPO. 1.
The objective is for the engineer to learn how to follow a defined process and to gather basic
size, time, and defect data.

PSPl and PSPl.l. Once engineers have gathered some historical data, the focus moves to
estimating and planning. Engineers write three programming assignments using PSPl and
PSPl.l. Engineers learn statistical methods for producing size and resource estimates, and
use earned value for schedule planning and tracking.

PSP2 and PSP2.1. Once engineers have control of their plans and commitments, the focus
of the course then changes to quality management. Engineers vmte four programming as-
signments using PSP2 and PSP2.1. Engineers learn early defect detection and removal
methods and improved design practices.

Mid-term and final reports. After the first six assignments have been completed, engineers
write mid-term reports, and after all ten programming assignments have been completed, en-
gineers write final reports. These reports document the engineers' analyses of their perform-
ance. Engineers are required to analyze their data to understand then- current performance, to
define challenging yet realistic goals, and to identify the specific changes that they will make
to achieve those goals.

CMU/SEI-2003-TR-014

By the end of the course, engineers are able to plan and control their personal work, define
processes that best suit them, and consistently produce quality products on time and for
planned costs.

In 1997, a study was conducted to analyze the impact of PSP training on 298 software engi-
neers [Hayes 97]. This study found that engineers were able to significantly improve their
estimating skills and the quality of the software products they produced. Engineers were able
to achieve these notable improvements without negatively affecting their productivity. In
terms of product quality and schedule variance, individuals were able to perform at a level
that one would expect from a SW-CMM Level 5 organization.

The 1997 study was recently repeated on a much larger data set of over a thousand software
engineers. The larger data set represents a more diverse group of instructors, engineers, pro-
graroming languages, development envkonments, etc. The purpose of the replication was to
demonstrate the statistically significant improvements in estimating and quality practices, i.e.,
to answer the question, can engineers learn to use their data to significantly improve their
performance? The results from this replication are essentially the same as in the original
study, with some minor differences. The findings are presented in Appendix A of this report.

2.3.1 PSP Measurement Framework

Engineers collect three basic measures: size, time, and defects. For the purposes of the PSP
course, size is measured in lines of code (LOC). In practice, engineers use a size measure
appropriate to the programming language and environment they are using; for example, num-
ber of database objects, number of use cases, number of classes, etc. In order to ensure that
size is measured consistently, counting and coding standards are defined and used by each
engineer. Derived measures that involve size, such as productivity or defect density, use new
and changed LOC (N LOC) only. "New and changed LOC" is defined as lines of code that
are added or modified; existing LOC is not included in the measure. Time is measured as the
direct hours spent on each task. It does not include interrupt time. A defect is anything that
detracts from the program's ability to completely and effectively meet the users' needs. A
defect is an objective measure that engineers can identify, describe, and count.

Engineers use many other measures that are derived from these three basic measures. Both
planned and actual data for all measures are gathered and recorded. Actual data are used to
track and predict schedule and quality status. All data are archived to provide a personal his-
torical repository for improving estimation accuracy and product quality. Derived measures
include:

• estimation accuracy (size/time)

• prediction intervals (size/time)

• time in phase distribution

CMU/SEI-2003-TR-014 7

defect injection distribution

defect removal distribution

productivity

reuse percentage

cost performance index

planned value

earned value

predicted earned value

defect density

defect density by phase

defect removal rate by phase

defect removal leverage

review rates

process yield

phase yield

failure cost of quality (COQ)

appraisal COQ

appraisal/failure COQ ratio

2.4 TheTSP
The TSP is based on the following principles:

• The engineers know the most about the job and can make the best plans.

• When engineers plan their own work, they are committed to the plan.

• Precise project tracking requires detailed plans and accurate data.

• Only the people doing the work can collect precise and accurate data.

• To minimize cycle time, the engineers must balance their workload.

• To maximize productivity, focus first on quality.

The TSP has two primary components: a team-building component and a team-working or
management component. The team-building component of the TSP is the TSP launch, which
puts the team in the challenging situation of developing their plan.

"Successful team-building programs typically expose a group to a challenging situation that
requires cooperative behavior of the entire group [Morgan 93]. As the group's members learn
to surmount this challenge, they generally form a close-knit and cohesive group. The TSP

8 CMU/SEI-2003-TR-014

follows these principles to mold development groups into self-directed teams. However, in-
stead of using an artificial situation like rock climbing or white water rafting, it uses the team
launch. The challenge in this case is to produce a detailed plan for a complex development
job and then to negotiate the required schedule and resources with management."

2.4.1 The TSP Launch

The first step in developing a team is to plan the work, which is done during the TSP launch.
The launch is led by a qualified team coach. In a TSP launch, the team reaches a common
understanding of the work and the approach they will take, produces a detailed plan to guide
the work, and obtains management support for the plan. A TSP launch is composed of nine
meetings over a four-day period, as shown in Figure 3.

Day 1

1. Establish
Product and

Business
Goals

^^1
2. Assign Roles

and Define ■•
Team Goals

HB
3. Produce
Development

Strategy

BH|

Day 2

4. Build Top-
down and

Next-Phase
Plans

5. Develop
the Quality

Plan ;

6. Build Bottom-
up and

Consolidated
Plans r

Days

7. Conduct
Risk

Assessment

8. Prepare
Management
Briefing and

Launch Report

I

Day 4

9. Hold
Management

Reviev/

Launch' ■
Postmortem

Figure 3: The TSP Launch

The first step in the launch is for the team to understand what they are being asked to do.
This is accomplished in meeting 1 by having marketing (or an appropriate customer represen-
tative) and management meet with the team. Marketing describes the product needs. Man-
agement describes the business needs and any resources and constraints under which the team
will have to work. This is also a chance for management to motivate the team. The team has
the opportunity to ask any questions they might have about the product or business needs. In
the next seven meetings, the team develops an engineering plan to meet the business needs.

In meeting 2, the team sets its goals and organizes itself. The team reviews the business and
product goals presented in meeting 1, and derives a set of measurable team goals. Next, the

Personal correspondence with Watts Humphrey.

CMU/SEI-2003-TR-014

team also decides which team members will take on which routine team management tasks.
These tasks are designated by manager roles:

• customer interface manager

• design manager

• implementation manager

• test manager

• planning manager

• process manager

• support manager

• quality manager

Each team member selects at least one role. For teams with more than eight members, roles
are shared. With smaller teams, team members may select multiple roles.

In launch meeting 3, the team determines its overall project strategy. The team members
produce a conceptual design, devise the development strategy, define the detailed process
they will use, and determine the support tools and facilities they will need. They list the
products to be produced.

In meeting 4, the team develops the team plan. This is done by estimating the size of the
products to be produced, identifying the general tasks needed to do the work and estimating
their effort, defining the tasks for the next development cycle to a detailed work-step level,
and drawing up a schedule of the team's availability week by week through the completion of
the project.

In meeting 5, the team defines a plan to meet its quality goals. The team does this by estimat-
ing the number of defects injected and removed in each phase and then calculating the defect
density of the final product. The team ensures that the tasks needed to achieve its quality
goal are included in the team plan. The quality plan provides a measurable basis for tracking
the quality of the work as it is done.

In meeting 6, tasks on the team plan for the next cycle of work are allocated to team mem-
bers, and each team member creates an individual plan. In building their plans, the engineers
refine the team estimates using their own historical data, break large tasks into smaller tasks
to facilitate tracking, and refine their hours available per week to work on this project. The
team meets again to review the individual task plans and to ensure that the work load is bal-
anced. The individual plans are consolidated into a team plan. The team uses this plan to
guide and track its work during the ensuing cycle.

10 CMU/SEI-2003-TR-014

The team conducts a lisk assessment in meeting 7. Risks are identified and their likelihood
and impact are assessed. The team defines mitigation and contingency plans for high-priority
risks. Risks are documented in the team plan and assigned to team members for tracking.

Meeting 8 is used to develop a presentation of the team's plan to management. If the team's
plan does not meet management goals, the team includes alternative plans that come closer to
meeting management's goals. For instance, the team might be able to meet a schedule by
adding resources to the team or by reducing the functionality delivered.

By the end of the launch, the team has formed a cohesive unit and created a plan that bal-
ances the needs of the business and customer with a feasible technical solution. The team has
agreed on the technical solution that they propose to build and understands how that product
will satisfy business and customer needs. The team agrees on the strategy and process for
developing the product. The team has a detailed plan that it can use to guide and track the
work. Team members all know who is responsible for which tasks and areas. Everyone on
the team understands and agrees with the quality goal, and the team can monitor progress
against that goal. Finally, the team has explored all of the things that might go wrong and has
done its best to mitigate those risks. In short, the TSP launch provides a team with all of the
conditions necessary to become a self-directed team.

In meeting 9, the team presents the plan to management for their approval to start the work.
The team explains the plan, describes how it was produced (Figure 4), and demonstrates that
all team members agree with and are committed to the plan. If the team has not met man-
agement's objectives, it presents one or more alternative plans. The principal reason for
showing alternative plans is to provide management with options to consider in case the
team's plan does not meet the organization's business needs.

Business needs
Management goals
Product requirements

Team goals
Conceptual
design
Planned products

• Team
strategy

• Team
defined

• Task plan
• Schedule

plan
• Earned-

• Team
roles

• Task plans
• Earned-

• Quality
plan

• Risks
• Alternative

plans

Size estimates process value plan value plan

Figure 4: The TSP Launch Products

CMU/SEI-2003-TR-014 11

At the end of the TSP launch, the team and management agree on how the team will proceed
with the project. The team has a plan it believes in, is committed to, and can track against.
The launch not only creates a winning plan, it builds a cohesive team.

The TSP includes guidance for ensuring that the energy and commitment from a TSP launch
are sustained as the team does its work. A TSP coach works with the team and the team
leader to help the team to collect and analyze data, follow the process defined by the team,
track issues and risks, maintain the plan, track progress against goals (especially the team's
quality goal), and report status to management.

2.4.2 TSP Measurement Framework

The TSP uses the same basic measures of the PSP—size, time, and defects—and adds task
completion dates. For all measures, planned and actual data are collected at the individual
level. The TSP measurement framework consolidates individual data into a team perspective.
The data collected are analyzed weekly by the team to understand project status against
schedule and quality goals. The TSP measurement framework also makes available other
views of the data, such as by product or part, phase, task, week, day, etc. Personal and team
data are archived to provide a repository of historical data for future use.

The team conducts weekly meetings to report progress against their plans and to discuss team
issues. They also use their TSP data to make accurate status reports to management on a regu-
lar basis. Because management can rely on the data, their job changes from continuously
checking project status to ensuring that there are no obstacles impeding the team's progress.
This also allows management to make sound business decisions, since they are based on ac-
curate engineering data. For example, when management is confident in the team's estimate,
management can decide how to allocate resources to obtain a schedule that best meets the
business needs. When a team commitment is in jeopardy, the team solves the problem or
raises the issue with management as early as possible. In all cases and at all levels, decisions
are made based on data.

2.4.3 The TSP Introduction Strategy

The SEI has been transitioning TSP into organizations since 1997 and has gained significant
experience with issues surrounding the introduction of this technology. Based on these ex-
periences, the SEI has defined an introduction strategy (Figure 5) and has developed support-
ing materials to facilitate the implementation of that strategy.

The introduction strategy starts with trial use. The TSP is first piloted on several small pro-
jects to evaluate both the transition approach and the impact of TSP on the organization. The
pilots also build the understanding, sponsorship, and support needed for broad acceptance of
the TSP in the organization.

12 CMU/SEI-2003-TR-014

Task Q1 Q2 Q3 Q4 Q5 Q6

Executive training/kickoff session

Select participants, develop schedule

Train managers, engineers, instructors

Conduct TSP pilots

Train transition agents

Plan and initiate roll-out

X

X

X X

X<

X'

X

X

X

Figure 5: TSP Introduction Timeline

All team members and all of their management are trained prior to the start of the pilot effort.
The senior management attends a one-and-a-half-day executive seminar and planning ses-
sion; the middle and line management attend three days of training; the engineers complete
the two-week PSP for Engineers course. The pilot teams are then started with a launch, and
they begin to use the TSP process as they do project work. Pilot projects can rapidly demon-
strate the benefits of using the TSP, and results from the pilot projects can be used to tailor
and improve both the TSP and the introduction strategy.

CMU/SEI-2003-TR-014 13

14 CMU/SEI-2003-TR-014

3 TSP Results

The remainder of this technical report describes the usage and experiences that illustrate the
benefits of TSP from three perspectives. We begin with a first-time project perspective. The
experiences of a first-time TSP team are described in detail, from PSP training through prod-
uct delivery. Next, we present some summarized project data. A summary of TSP data from
thirteen organizations and at least twenty projects is presented. Finally, we switch from data
to personal experiences. We present anecdotes from the PSP and TSP communities that relate
experiences which cannot be described by data alone.

For each of these three perspectives, we first describe the source of the data. We then present
the data. And finally we describe conclusions drawn from that data.

CMU/SEI-2003-TR-014 15

16 CMU/SEI-2003-TR-014

4 A First-Time TSP Project

4.1 Data Source
The team described in this section was part of a multinational company that has been in-
volved with CMM-based software process improvement for several years. The organization
worked with the SEI to use the standard TSP introduction strategy to pilot test the TSP on
two projects. The data included in this section represents one of those pilot projects. We
chose this project for several reasons. We have complete data on the project, from the PSP
for Engineers course data, TSP launch data, and through to project completion. Also, we feel
that this project's experiences typify what many first-time TSP teams encounter. In fact, this
project was the first TSP pilot project to finish in this organization. And finally, this project
encountered problems most software development projects do, such as effort underestimation
and changing requirements.

4.2 PSP For Engineers Training Results
The class data presented here represents the engineers who completed most of the PSP for
Engineers training. The data represents 84% of the 22 engineers who completed at least 9 of
the 10 programs, and 4 of the 5 reports. The class included members of the pilot project de-
scribed in this report, as well as other engineers. Throughout the PSP training, the key meas-
ures defined in the PSP Measurement Frameworks section (page 7) of this report are tracked
for each of the 10 programs the engineers write. For each assignment, the class average and
the minimum and maximum values for that measure are plotted. Don't assume that the
maximum or minimum data point represents the same engineer. This is almost never the
case. Engineers are presented with their class data throughout the course to illustrate the
benefits the class is realizing from using these methods.

CMU/SEI-2003-TR-014 17

4.2.1 Time and Size Range

The charts in Figure 6 show the time spent developing each program in the course, as well as
the size of that program.

Actual Time Range

Max

-Avg

- Min

123456789 10

Program Number

Actual Size Range

123456789 10

Program Number

Max

-Avg

■ Min

Figure 6: Time and Size Range

While the maximum and minimum time to develop each program varies widely, the class
average is around four hours per assignment. Similarly the size range varies greatly between
the maximum and minimum size. The size variation often represents different solutions for
the same requirement, hi this class, size variation was not due to differences in language or
counting standards. All engineers used either C or C++ and the same counting standard.

18 CMU/SEI-2003-TR-014

4.2.2 Time and Size Estimating Accuracy

Figure? shows the time and size estimating error for each of the ten programs. The time and
size estimation error is calculated as

%Estimate Error = 100 * (Actual - Estimate)/Estimate

Note that, unlike the rest of the charts in this section, the class line is a composite estimate for
all engineers. For time, the composite estimate is the sum of the engineers' estimated hours.
Similarly, the composite actual time is the sum of the engineers' actual hours. The class line
is the error between the composite estimated hours and the composite actual hours. The class
line for size estimating error is calculated similarly.

Time Estimating Accuracy - % Error

500-

400

-100

Max

-Class

- Min

1234567891

Program Number

Size Estimating Accuracy - % Error

350

300

250

200

150

100

50
0

-50

-100
-150-L

\/\
Max

-Class

-MIn

1234567891

Program Number

Figure 7: Time and Size Estimating Error Range

As can be seen, the composite estimation error appears to be stable, with an improving trend.
This illustrates the benefits of independent, non-biased estimates. All engineers make non-
biased estimates using statistical methods and historical data. Some engineers overestimate,
while others underestimate, thus balancing the composite estimate. This helps engineers to
understand the importance of breaking a problem down into parts and estimating each part
independently using non-biased statistical methods.

Another point to note in the chart is the narrowing range of the estimation error. As engineers
learn and use defined effort estimation procedures, the range between the maximum and
minimum estimation error narrows.

As with the time estimate, the composite size estimate appears to be stable, with an improv-
ing trend, again illustrating the benefits of combining non-biased estimates. The range of the
size estimation error narrows as the engineers learn to use a defined size estimation proce-

CI\/IU/SEI-2003-TR-014 19

dure. (Note: Engineers did not estimate program size for program 1, hence the zero percent

error for that data point.)

4.2.3 Compile
"Compile defect density" is the number of defects found by the compiler per thousand new
and changed LOC. "Compile time" is the time it takes the engineer from when he or she
starts compiling a program to when he or she gets a clean compile. The charts in Figure 8
show the defects found during compile and compile time as a percentage of total develop-

ment time.

Compile Defect Density Range

300 j

K
LO

C

\

\
■

 Max

1 ^^°' Avg

£ 100- ■ ^-^x Min

O 50- ̂ -~—sV^
23456789 10

Program Number

Compile Time Range

Max

-Avg

■ Min

123456789 10

Program Number

Figure 8: Compile Defect Density and Compile Time

In most development environments, compile errors are the only objective measure of the
quality of the code. Reviews, inspections, and test defects can all be affected by the quality
of the reviewers or the quality of the tests. Compile defect density is an early indicator of

final product quality.

Engineers started the course spending about 9% of total development time removing about 51
defects per thousand lines of code (defects/KLOC) in compile.^ After the introduction of per-
sonal code reviews and personal design reviews in program 7, engineers are able to remove
most defects before compile. By the end of the course, engineers are spending less than 2%
of total development time in compile, removing an average of 9 defects/KLOC. The quality
of the code the engineers were compiling improved by a factor of five, thus time spent in the

compile phase was minimal.

See Section 4.2.7 for course summary data.

20 CMU/SEI-2003-TR-014

4.2.4 Design Time Range

In the PSP, design time includes the time spent reviewing the requirements and producing a
design to meet them. The chart in Figure 9 shows the percentage of total development time
that engineers spent in the design activities.

Max

-Avg

-Min

23456789 10

Program Number

Figure 9: Design Time Range

Engineers use their existing methods through program 7. Starting with program 8, engineers
are introduced to robust design specification methods. Engineers are surprised to see the
small percentage of time spent in design activities prior to the introduction of these methods.
For example, this class's data show that at the beginning of the course, engineers were spend-
ing as much time compiling their code as they were in designing their programs. Engineers
claim to love design but seem most comfortable spending their time in compile and unit test
(see Figure 8 and Figure 10).

CMU/SEI-2003-TR-014 21

4.2.5 Unit Test

Unit test defect density is the number of defects found during unit testing per thousand new
and changed LOC. Unit test time is the time it takes the engineer from when he or she starts
to test a program to when all tests run successfully. The charts in Figure 10 show the defects
found during unit test and unit test time as a percentage of total development time.

Defects Found in Test Range

Max
-Avg
- Min

H 1 1 1 1

23456789 10

Program Number

Test Time Range

80-

70 +

60-

50+,--

40-

30-

20 f"

10-

0-

y'\ Max
-Avg
- Min

I ~r"r~r-r'i
123456789 10

Program Number

Figure 10: Unit Test Defect Density and Unit Test Time

Engineers started the course spending about 22% of total development time in unit test, re-
moving about 31 defects/KLOC. With the introduction of quality methods in program 7
(personal design and code reviews and robust design specifications), these numbers are re-
duced. By the end of the course, engineers are spending less than 14% of total development
time in unit test, removing an average of 8 defects/KLOC. Also, note the variance around the
class average. The range between the maximum and minimum value narrows, but not be-
cause the minimum defect density worsens, but because the maximum defect density is re-
duced. This considerably improves predictability.

The quality of the code the engineers were testing improved by a factor of four (from 31 de-
fects/KLOC to 8 defects/KLOC). Thus time spent in the unit test phase was minimized.

22 CMU/SEI-2003-TR-014

4.2.6 Productivity

Productivity is defined as development time per new and changed LOC. The chart in Figure
11 shows the change in productivity over the ten programming assignments.

o
o o

160

140

120

100--

80-I-'
60

40

20-1;

0 H 1 h H 1

123456789 10

Program Number

-Max

-Avg

-Min

Figure 11: Productivity Range

An argument frequently made is that disciplined methods take too much time. These data
clearly show that this is not the case for this team. There is no impact to productivity, yet the
quality of the product entering unit test improved by a factor of four.

CMU/SEI-2003-TR-014 23

4.2.7 Class Summary
The results from PSP training were impressive, and consistent with results documented in
Appendix A and in a previous SEI report [Hayes 97]. These results are summarized in Table
1. The first column describes the measure, the second column shows its value at the start of
PSP training (class average for the first two programs), and the third column shows its value
at the end of PSP training (class average for the last two programs).

Measure At the start of training At the end of training

Percent time spent in compile 9% 2%

Percent time spent in design 10% 17%

Percent time spent in unit test 23% 14%

Compile defect density (number of defects found during

compile per thousand lines of code [KLOC])

51 defects/KLOC 9 defects/KLOC

Unit test defect density (number of defects found during

unit test per KLOC)

31defects/KLCX: 8 defects/KLOC

Yield (percentage of defects found before first compile) 5% 55%

Productivity (detailed design through unit test) 43 LOC/hour 53 LOC/hour

Table 1: PSP Class Results

4.3 The Project Results
Less than a month after completing the PSP for Engineers training, the first TSP project was
launched. The team consisted of five team members, including the team leader. The team
leader was open-minded about the TSP and fully supported its use. Of the other four team
members, one had fully embraced the PSP, another felt comfortable with using disciplined
processes, and the other two were skeptical.

4.3.1 The Launch
Senior management was well prepared for the launch. Management discussed the importance
of this product to the business, both from a functionality point of view and a sales potential
point of view. Management told the team that their expectation was for the software to be
delivered to the testing group in nine months.

A marketing representative followed the senior management presentation, and discussed the
product needs with the team. The team members asked several questions, and launch meet-
ing 1 ended on schedule.

24 CMU/SEI-2003-TR-014

The launch meetings proceeded in a fairly routine manner. The team members chose roles
that best suited their abilities. Conceptual design took a while to complete. First, the team
wanted to go into much more detail than was necessary at this point in the launch. After
some attempts to get the team to step back and do the conceptual design at a very high level,
the coach let the team get into more detail, knowing that the launch process was flexible
enough to accommodate this. Next, the team questioned the need to define a development
strategy, the products to be produced, and the development process for each product type.
There was some impatience to get to what the team considered "real planning," or who does
what task when. However, they agreed to follow the process and completed each step lead-
ing up to task identification, estimation, scheduling, and assignment. As the launch pro-
gressed, one team member told the launch coach that this was the first time he understood
what commitments had been made on his behalf prior to the launch.

The plan the team came up with showed software delivery to test eleven weeks beyond man-
agement's schedule goal. Some team members were concerned about giving bad news to
management. The launch coach wanted to make sure that the entire team believed in the
plan, so the launch coach asked each team member if he or she thought the plan was too con-
servative, and why. Every team member agreed with the schedule the team had developed.

It was now about 7:00 p.m. on day three of the launch. The team had worked very hard for
three days, and had not had dinner yet. They had completed the outline, as well as most of
the content of the management presentation. The team leader and the launch coach volun-
teered to fill in the outline with the data captured on flip charts and artifacts during the earlier
meetings of the launch, thus allowing the team members to go home. Not one single team
member accepted this offer. This was their plan, and they were not going to let the team
leader or the launch coach finish the management presentation. They stayed late and dis-
cussed each word and sentence until they were all satisfied the presentation represented their
plan.

The next day, the team leader presented the plan to management. Management asked several
questions and was especially concerned with the planned task hours per team member per
week. In the end, management accepted the team plan and challenged the team to improve
on the planned task hours per week.

During the launch postmortem, the team remarked on how surprised they were about the
amount of work they had accomplished during the week. The team leader said the launch
process was very good at guiding the team step by step through the planning process, thus
allowing the team to concentrate on one thing at a time. She said that if she had known on
day one everything the team would have to do during the launch, she would have been over-
whelmed. The team members thought they should have been given more time before the
launch to work on a conceptual design. They felt they were rushed during the size estimation

CMU/SEI-2003-TR-014 25

phase. Finally, the team members commented that having an experienced, neutral facilitator
as a launch coach helped them to be successful.

4.3.2 Plan Summary
The plan the team developed during the launch is summarized in Table 2. The eamed-value
plan developed during the launch is shown in Figure 12.

Delivery to testing group Week 47

Ready to release Week 58

Effort estimate 2814 hours

New and changed LOC 14.5 KLOC

System test defect density .36 defects/KLOC

Average task hours per team member per week 15 task hours/week

Table 2: Plan Summary

Cumulative Earned Value

- Cumulative FTanned Value

- Cumulative EV

- Cumulative Predicted Earned Value

I Ill

Weeks

Figure 12: Earned-Value Plan

4.3.3 Executing The Plan
As with most software projects, this team encountered many obstacles as it started executing
the plan it developed during the launch: some risks were realized, some tasks were underes-
timated, and requirements changed and grew. In order to simplify the story of this project.

26 CMU/SEI-2003-TR-014

snapshots of the project are presented at week 13, after week 46, after week 49, and after
week 62. Week 13 was the week prior to the first relaunch, week 46 was the week before the
original date the team committed to delivering the software to test, week 49 was when the
team first delivered software to test, and week 62 was when the product was ready for re-
lease.

Week 13 - One Week Before Relaunch

A high-impact risk identified during the launch was that the engineers might be distracted
from working on the new product because of the excessive support required for legacy prod-
ucts. This risk was realized. The team found itself providing more support than planned for
an existing delayed release. By week 13, as shown in Table 3, the team was about 15% be-
hind in task hours (plan of 650 project hours to date versus actual of 565.1), and had under-
estimated their work by 38% (plan of 306.6 for work completed versus an actual of 497.8).
They had earned only half of the earned value that they had planned to earn. If the team con-
tinued to earn value at the current rate, the schedule exposure was at least six months.

Week 13 Data Plan Actual

Plan/

Actual

Project hours for this week 48.0 25.0 1.92

Project hours this cycle to date 650.0 565.1 1.15

Earned value for this week 1.8 3.3 0.54

Earned value this cycle to date 46.9 23.8 1.97

To-date hours for tasks completed 306.6 497.8 0.62

Table 3: Team Status at Week 13

In order to mitigate this schedule exposure, management decided to add three new team
members to the project. During the launch, management had decided against additional re-
sources, but when presented with data that showed the team was not going to make the
schedule, management made a rational decision to add resources to the project. Therefore, in
week 15, the team relaunched with the three new team members who had partially completed
PSP training. During the relaunch, the team reestimated the remaining work. Based on les-
sons learned from the first 14 weeks and the additional overhead associated with the new
team members, the team created a new plan. The new effort estimate was 3328 hours, an
increase of 15% over the original plan. The release date was unchanged at week 58.

CMU/SEI-2003-TR-014 27

Week 46 - One Week Before Scheduled Delivery To Test

The team data at week 46 (Table 4) showed that the original team commitment for delivering
the product to the testing group was 3% behind schedule (planned value of 96.5 versus an
earned valued of 93.6). The earned value chart, shown in Figure 13, predicted completion by
week 49, two weeks behind the date committed at the initial launch. The six-month delay

that been predicted in week 13 had narrowed to only a two-week delay.

Week 46 Data Plan Actual Plan/Actual

Project hours for this week 103.0 102.8 1.00

Project hours this cycle to date 3319.2 3829.8 0.87

Earned value for this week 1.7 1.0 1.75

Earned value this cycle to date 96.5 93.6 1.03

To-date hours for tasks completed 3051.7 3715.9 0.82

Table 4: Week 46 Status

100 T

90

80

01
3

I
E
iS

Cumulative Earned Value

- Cumulative Ranned Value

- Cumulative B/

- Cumulative R-edicted Earned
Value

I M I I I I I I I
O m m

CO
CM !§

Weeks

Figure 13: Earned Value Through Week 46

The team was able to close the schedule gap because they added three new team members,
continually monitored their status and took corrective action as needed, replanned and rebal-
anced tasks as needed, and added a co-op student to help with non-critical tasks. The team

28 CMU/SEI-2003-TR-014

also improved average task hours per person, as shown in Figure 14 (week 18 was Christmas
week, thus the zero task hours that week) and Table 5. The task hour improvement did not
happen by accident: the team planned this during the relaunch. The task hours were not im-
proved by working overtime; in fact, the team worked much less overtime on this project
than on previous ones. The task hour improvement came by increasing uninterrupted time on
task, by adopting quiet time, by streamlining necessary meetings and eliminating unnecessary
ones, and by adopting flexible work hours. The interesting thing to notice is that just by task
hour management, the team was able to increase its productivity by 28% (from 11.36 to 15.77
average task hours per team member per week).

Average Weekly Task Hours Per Team Member

25

01 CO (7) <M in on ^
■^ h- o 55 <o O)

CM CM CM CO CO co •^ ■^ "*
Week

Figure 14: Average Weekly Task Hours

Average Task Hours Per Engineer Per Week

Before relaunch (weeks 1-14) 11.36

After relaunch (weeks 15-49) 15.77

Table 5: Average Weekly Task Hour Improvement

Week 49 - Delivery To Test

The team was able to deliver software to the testing group in week 49, just two weeks behind
schedule. The team was about a week away from delivering the software to the testing group
when they were asked to implement a new requirement. The team estimated that it would
take 252 task hours to develop the additional functionality. Management did not want the
original release date of week 58 to slip due to the added functionality. The team was confi-
dent that the software they were delivering to system testing was of high quality. Therefore,
they planned to spend very little time fixing system test defects. Using their historical aver-

CMU/SEI-2003-TR-014 29

age task hours, their plan showed that they could implement the additional functionality
without delaying the final release date. They achieved this goal by planning to develop the
additional functionality while the testing group was testing the initial functionality.

Week 62 - Project Completion

The team spent more than a third of their total development effort in quality activities such as
design, reviews, and inspections (Figure 15). The software delivered to the testing group was
thus of high quality. Before the software was delivered to system testing, 945 defects were
removed, leaving less than 0.44 defects/KLOC to be found in system testing. Note that the
team has an improvement opportunity for personal design and code reviews, but their inspec-
tions worked well (Figure 16).

As with typical software projects, testing proved to be an unpredictable activity. Even though
very few defects were found during system testing, one defect was not discovered until a last-
minute regression test. The product was released in week 62, four weeks beyond the date to
which the team had committed over a year earlier, and with more functionality than they had
originally planned. The final project status is shown in Table 6 and Table 7. Compared to a
previous release of a similar product, these results represent

• lOx reduction in the number of problems logged by the testing group

• 8x reduction in system test duration

The team leader said the engineers were happy to have worked on a project that was deliv-
ered on time. She said it was a positive experience for everyone involved. The manager of
the testing group said this was one of the most stable releases that his group had ever tested.
The team members all said they enjoyed working on this project.

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

«N*

h
'A

i

y .A''
CP" ^^ <f^ -<^

/ .y
c^

Figure 15: Effort Distribution

30 CMU/SEI-2003-TR-014

o o

o
a

-Ran

-Actual

Phase

Figure 16: Defects Removed By Phase

Project length 62 weeks

Schedule variance 6.9%

Percent effort in system test 4.3%^

Defects removed before delivery to testing group 945

Table 6: Final Status

^ Percent effort in system test is the effort the developers spent supporting the testing group (fixing
defects found by the testing group).

CMU/SEI-2003-TR-014 31

Plan Actual

Delivery to testing group Week 47 Week 49

Ready to release Week 58 Week 62

Effort estimate'' 2814 hours 3670 hours

New and changed LOC 14.5 KLOC 28.9 KLOC

System test defect density .36 defects/KLOC .44 defects/KLOC

Average task hours per team member

per week

15 15.77

Table 7: Plan Vs. Actual

4.4 First-Time TSP Team - Conclusion
This project illustrated many of the problems that most software development projects face.
For instance, the initial estimates were wrong, the requirements grew, and the team was con-
stantly interrupted with work not directly related to the project. It's impossible to point to
any one thing and say "this is why the team succeeded." First, the team has to know as early
as possible when there is a problem. TSP teams collect data daily and review schedule and
quality status weekly. This allowed this team to recognize in the early weeks of the project
that they were falling behind schedule. Second, the team must understand what is causing
the problem. In this case, the team had underestimated the work and overestimated available
task hours. Then, the team must understand possible ways to address the problem. This team
was able to take several steps to address the schedule slip. The team was able to provide
management with the engineering data needed for management to make a business decision:
should more resources be allocated to this project to bring in the schedule or should those
resources be allocated elsewhere, letting the schedule slip? Management decided to allocate
more resources to the project to maintain the original schedule. The team members analyzed
their data and discovered that interruptions were preventing them from achieving their
planned task hours. The team took active steps to correct that problem as well.

Another contributor to the team's ability to meet its schedule commitment was its focus on
quality. The team made a quality plan and did not abandon that plan under schedule pressure.
Because the team actively managed quality, they were able to produce a high-quality product
and did not get caught up in endless test and fix cycles.

Many teams don't realize how much development time is "lost" while fixing defects that are
found during system test and customer use. This time could instead be spent developing a
new product or implementing new functionality. While typical software teams would be

The plan and actual effort data does not reflect the additional functionality added in week 48 of
the project.

32 CMU/SEI-2003-TR-014

spending an enormous amount of time fixing defects found in test, this team was implement-
ing new functionality.

Finally, while the importance of using disciplined methods cannot be underestimated, it is the
intangible, human elements of a TSP team that also determine whether a project will succeed
or fail. This team was committed to their team goals, they depended on each other, they
swapped tasks when needed, their team leader bought them doughnuts each time they submit-
ted their weekly team data, they asked their team coach for help when their plans no longer
worked for them, their management provided them help when they needed it, and they en-
joyed working on a successful project. And so, while no single reason can be isolated for this
project's success, it may be safe to conclude that the project may not have been successful
without the combination of reasons described here.

CMU/SEI-2003-TR-014 33

34 CMU/SEI-2003-TR-014

5 Summarized Project Data

5.1 Data Source
The data summarized in this section come from all TSP presentations developed for the
Software Engineering Process Group (SEPG) conferences (http://www.sei.cmu.edu/sepg) and
the SEI Software Engineering Symposiums for the years 2001 through 2003 [Ciurczak 02,
Davis 01, Janiszewski 01, Narayanan 02, Pracchia 03, Riall 02, Serrano 03, Schwalb 03,
Sheshagiri 02, Webb 02].^ We also examined the detailed data submitted to the SEI by the
teams represented in those presentations (so launch coaches, please keep that data coming
in!). The data presented here represent thuteen organizations and over twenty projects from
these organizations. Some organizations presented summary data from more than one project
without specifying the number of projects, so the exact number of projects could not be de-

termined.

1. ABB, Inc.

2. Advanced Information Services

3. Anonymous

4. Cognizant Technology Solutions

5. Electronic Brokering Services (EBS) Dealing Resources, Inc.

6. Hill Air Force Base

7. Honeywell

8. Microsoft Corporation

9. Naval Air Warfare Center

10. Quarksoft, S.C.

11. SDRC

12. United Defense, LP

13. Xerox

Also Ciurczak, John, 'The Quiet Quality Revolution at EBS Dealing Resources, Inc.," Strickland,
Keith, 'The Road Less Traveled," and Webb, Dave, "Implementing the Team Software Process."
Submitted for presentation at the Software Engineering Institute's Software Engineering Sympo-
sium, 2001.

CMU/SEI-2003-TR-014 35

5.2 Results
The data presented here are from a diverse group of organizations. Product size range is from
600 LOC to 110,000 LOC, team size range is from 4 team members to 47 team members, and
project duration range is from a few months to a couple of years. Application types include
real-time software, embedded software, IT software, client-server applications, and financial
software, among others. Several programming languages and development environments
were used (mostly third and fourth generation languages and development environments).
We did not attempt to classify the data based on any of these differences. Instead, we gath-
ered all the measures reported for each organization and calculated the range and average of
the values reported. The ranges and averages do not include data from every project, as not

all organizations reported the same measures.

We have also tried to compare the TSP projects presented here with typical projects in the

software industry. This comparison is rather difficult to make, since there are not much data
available on some of the measures tracked in the TSP. For schedule data, we used the Stan-
dish Group Chaos Report.* For time-in-phase data, we used several sources, including
several estimation models, data from the NASA Software Engineering Laboratory [SEL 93],
and pre-TSP data from some of the organizations we have worked with [Humphrey 02, Jones
95 a, Jones 96, Jones 00]. For quality data, we mostly used Capers Jones as our source [Jones
95a, Jones 96, Jones 00], backed by pre-TSP data from some organizations we have worked
with, as well as data from Watts Humphrey [Humphrey 02].

Jones uses function points as the size measure for normalizing defects (defects/function
point). Since the TSP uses LOC as the default size measure, we had to convert function
points to LOC. We used the "backfiring" method he described [Jones 95b] for this conver-
sion. Jones suggests using a default of 80 LOC per function point for third-generation lan-
guages, and a default of 20 LOC per function point for fourth-generation languages. How-
ever, we chose to be conservative and used a default of 100 LOC per function point, as Jones
does when discussing non-specific procedural languages.

5.2.1 Schedule Deviation

A premise of the TSP is to start with the best plan possible, using sound estimating and plan-
ning methods, and then update the plan as needed when you learn more about the work, or if
the work itself changes. Because of the constant awareness of plan status, and because teams
adjust their plans based on the plan status, TSP teams are able to reduce schedule error. The
schedule data presented in Table 8 shows that TSP teams missed thek schedule by an average

of 6%.

"CHAOS '94 - Charting the Seas of Information Technology." The Standish Group International,
Inc., 1994.

36 CMU/SEI-2003-TR-014

Measure

Schedule error average

Schedule error range

TSP Projects

6%

-20% to 27%

Typical Projects

(Standish Group Chaos Report)

More than 200% late
6%

101%-200% late
16%

51%-100% late
9%

Less than 20% late
6%

Table 8: Schedule Deviation

5.2.2 Quality

One reason TSP teams are able to meet their schedule commitment is that they plan for qual-
ity and deliver high-quality products to test. This shortens time spent in test, which is usually
the most unpredictable activity in the entire development life cycle. The data in Table 9 show
that TSP teams are delivering software that is more than two orders of magnitude better in
quality than typical projects (0.06 defects/KLOC versus 7.5 defects/KLOC). Products being
developed by TSP teams have an average of 0.4 defects/KLOC in system test, with several
teams reporting no defects found in system test. TSP teams spent an average of 4% of their
total effort in post-development test activities; the maximum effort that any team spent in test
was 7%. Similarly, the average percentage of total schedule (project duration in calendar
time) spent in post-development test activities was 18%. Typical non-TSP projects routinely
spend 40% of development effort and schedule in post-development test activities. The 0.5
average days to test a thousand Unes of code is a result of the higher quality of code entering
system test. Some teams report that system test time was essentially equal to defect-free test
time (time it takes to verify that the software works). Average failure COQ (percentage of
total effort spent in failure activities) is much below the 50% typically found in the software
industry.

CMU/SEI-2003-TR-014 37

Measure TSP Projects

Average

Range

Typical Projects

Average

System test defects (defects/KLOC) 0.4

0 to 0.9

15

Delivered defects (defects/KLOC) 0.06

0 to 0.2

7.5

System test effort (% of total effort) 4%

2% to 7%

40%

System test schedule (% of total duration) 18%

8% to 25%

40%

Duration of system test (days/KLOC) 0.5

0.2 to 0.8

NA''

Failure COQ 17%

4% to 38%

50%

Table 9: Quality

Figure 17: Average Defect Density of Delivered Software

Figure 17 shows the quahty of dehvered software classified by CMM Level [Jones 00], com-
pared to the TSP teams presented in this report. These data show that TSP teams produced
software an order of magnitude higher in quality than projects from organizations rated at

CMM Level 5.

This data was not available.

38 CMU/SEI-2003-TR-014

Some organizations reported the benefits of the TSP compared to previous projects (Table
10). They reported an average of 8 times reduction in system test defect density when using
the TSP. System test duration was reduced an average of 4 times with the TSP: for example,
a TSP project spending 0.5 days/KLOC in system test would have been spending 2.0
days/KLOC prior to using the TSP.

Measure TSP Projects

Average

Range

System test defect reduction 8 times

4 times to 10 times

System test duration reduction 4 times

2 times to 8 times

Table 10: Reductions In System Test Defects and System Test Duration

5.2.3 Quality is Free

A frequent concern expressed about disciplined methods is the perceived adverse impact on
productivity. The data in Table 11 show that TSP projects improve their productivity and at
the same time reduce their failure COQ (percentage of total effort spent in failure activities)
and their total COQ (percentage of total effort spent in failure and appraisal activities). The
main reason for this increase in productivity is the reduced time spent in test because of
higher quality products being delivered into test, as shown in Table 9.

Measure Average

Productivity improvement 78%

Failure COQ reduction 58%

Total COQ reduction 30%

Table 11: Improvements in Productivity and Cost Of Quality

5.2.4 Comparing Summary of Results

A previous technical report summarized TSP data from four organizations and fifteen projects
[McAndrews 00]. Table 12 provides a comparison between the early results from TSP pro-
jects described in that report and the later results presented in this report. The later data rep-
resent a more diverse set of organizations than the earlier report (thirteen versus four organi-
zations). We also have more complete data on the newer projects, and thus were able to
calculate some measures that were not presented in the previous report. The data show that
although the effort deviation range widened a little since the earlier TSP report, average
schedule deviation remained basically unchanged. One conclusion that can be drawn from
these data is that teams are able to manage effort deviation while they meet their schedule

CMU/SEI-2003-TR-014 39

commitments. The system test defect density, acceptance test defect density, and duration of
system test show projects reporting even better quaHty results than those in the initial TSP
report. The better quality may also account for projects meeting schedule commitments de-

spite effort deviations.

Measure TSP Projects
Results 2000'

Average

Range

TSP Projects
Results 2003'

Average

Range

Effort error -4%

-25% to +25%

26%

5% to 65%

Schedule error 5%

-8% to +20%

6%

-20% to 27%

System test defects (defects/KLOC) NA

0 to 0.9

0.4

0 to 0.9

Acceptance test/released defects (defects/KLOC) NA

0 to 0.35

0.06

0 to 0.2

Duration for system test (days/KLOC) NA

0.1 to 1.1

0.5

0.2 to 0.8

Table 12: Results Comparison Between 2000 and 2003

10

5.3 Summarized Project Data - Conclusion
The results summarized in this section are remarkable when compared to typical software
projects. The Standish Group reported in 1999 that 74% of all projects were not successful
The Standish group also reported in 1996 that unsuccessful projects accounted for over half
(53%) of total spending on software projects." And in 1994, the same group reported that for
the unsuccessful projects, the average cost overrun was 189% and the average time overrun
was 222%. Typical projects spend 40% to 60% of total project time on test, and typical de-
fect densities of delivered products range from 1 to 10 defects/KLOC [Humphrey 02].

As we reviewed data from a diverse group of organizations using the TSP, we were struck by
the fact that to a large extent, these organizations were using a common operational definition
for measures reported. For example, when projects report defect density, it is understood that
they are talking about number of defects found per thousand lines of new and changed code
only. Or when effort hours are reported, only on-task hours are measured. We also noticed a

* Results from four organizations and fifteen projects reported in The Team Software Process
[Me Andrews 00].

' Results from thirteen organizations and twenty projects presented in Section 5 of this report.
'° "CHAOS: A Recipe for Success. Project Resolution: The 5-Year View." The Standish Group In-

ternational, Inc., 1999.
" "CHAOS '97 - The Changing Tide." A Standish Group Research Note. The Standish Group In-

ternational, Inc., 1997.

40 CMU/SEI-2003-TR-014

common language used for project management: terms such as yield, cost of quality, earned
value, task hours, and defect density all have the same meaning across projects and across
organizations. Common operational definitions of measures, as well as a common project
management language, are both results of using the TSP. These results show that the team
described in Section 4 is not unique—all of these projects were able to overcome similar ob-
stacles and be successful.

CMU/SEI-2003-TR-014 41

42 CMU/SEI-2003-TR-014

6 Anecdotes

While quantitative data are important, numbers illustrate only part of the results. Equally
important are the stories behind the results, both positive and negative. In this section, we
provide some of the stories and comments behind the data. Positive stories illustrate the
qualitative benefits TSP teams have been able to achieve, while negative stories provide valu-

able lessons learned.

6.1 Data Source
The stories and comments in this section of the report come from four primary sources. The
first source is a survey that was sent to the SEI authorized PS? instructor and TSP launch
coach communities asking about their experiences with PSP and TSP.'^ The second source is
the evaluation forms and reports completed after each launch or relaunch and submitted to
the SEI. The launch coach and all team members complete evaluation forms. The launch
coach often writes a launch report to document significant events from the launch. The third
source is the project post mortems conducted at project cycle completion or at project com-
pletion. This post-mortem data is also submitted to the SEI. The fourth source is presenta-
tions developed for the Software Engineering Process Group (SEPG) conferences and the
SEI Software Engineering Symposiums.

6.2 Anecdotal Results
Most anecdotes presented in this section are verbatim from the individual; however, we have
changed proper names and gender, and corrected grammatical and spelling errors. Some an-
ecdotes are synopses of stories related to our team either verbally or through launch reports.

'^ A summary of the survey questions is included in Appendix B. Appendix B also contains detailed
information about the people who replied to the survey; e.g., whether they are still using PSP/TSP,
what kind of software their group develops.

CMU/SEI-2003-TR-014 43

6.2.1 Introduction Strategy

The introduction strategy developed by the SEI incorporated lessons learned from many pro-
jects we have worked with. This section shows similar lessons learned by other organizations
about the introduction strategy as described in Section 2.4.3, page 12.

Task Q1 Q2 Q3 Q4 Q5 Q6

Hold executive training/kickoff session

Select participants, develop schedule

Train managers, engineers, instructors

Conduct TSP pilots

Train transition agents

Plan and initiate roll-out

X

X

X X

X

X '

X

X

X

Figure 18: Introduction Strategy and Timeline

"Don't do TSP without complete PSP
training."

"It's better to train the engineers who are
going to be involved in the TSP pilot pro-
jects. "

"The majority of people do not use PSP
unless they are part of a TSP team^even
though they loved the course."

"My personal experience is implementing
PSP alone will not yield benefits. You
should implement PSP with TSP. Then
only do you get excellent benefits."

"Don't try to do all software teams at
once. Get a small pilot started and into
system test. Then use their success to sell
this, sell this, sell this."

"Most pilots that fail never make it to a
launch. They fail because of shifting
management priorities or lack of sponsor-
ship in training. The other road to failure
is making special exceptions for a cowboy.
Anyone that is not prepared to do the
process and seriously try to make it work
should be removed from a pilot project
ASAP. Anyone that proactively under-
mines an organization's pilot project
should be removed."

"After training the engineers with PSP,
have TSP launches as soon as possible.
When there is a gap, people tend to go
back to the original process if left unat-
tended. "

44 CMU/SEI-2003-TR-014

6.2.2 Conviction to Change

PSP for Engineers training is much more than skill training: the purpose of the PSP for Engi-
neers course is to provide people with the conviction and motivation to change the way they
work. The course is very personal. It is about collecting your data, to understand your per-
formance, so you can improve what you are doing, and to strive to reach your personal best.
The anecdotes in this section are typical of what we hear in PSP for Engineers classes. TSP
teams foster an environment that nurtures and supports personal improvement.

"The course is not about the lectures. The

course is not about the programming the
students do—how fast/well they do it. The
course is about the students seeing for
themselves how they really work, and real-
izing that they can make improvements. If
students see it as something for them, then
they are much more likely to carry it on

afterwards."

"The best part about PSP/TSP is that col-
lecting the metrics is for my benefit, not
for someone else. I found that collecting
the data proved to me that using a better

process really does help my quality and

productivity."

"In the end, what this is really about is
people. No matter what you are investing
in, what training, process improvement
effort...what you are really investing in is
people. And the important thing is that we

improve what we are doing."

"A student related this story to me about

his own 'conversion.' He had been doing
well in class. We were already late in the
course, and had our code review and de-
sign review checklists and were using
them. This student was doing the course
in Object Pascal. He got called in to do
some work with a customer on a program

he had helped with several years ago. He
was supposed to add some functionality.

He and two other programmers were
working on it. He said, 7 considered tak-
ing my review checklists with me but
thought, nah, my review checklists are for
Pascal, not for ADA.' So he and the oth-

ers worked on the project. They got to the
end of coding and tested. There was
something wrong in test—it didn't work. It
took them 6 hours to find the defect (18
man hours). When they finally found it, it
was a missing ';'. This was one of the
things my student had on his checklist. He
was a very strong proponent of PSP after

that."

"In week 1, engineers complain endlessly

about why they have to collect compile
defect data. In week 2, engineers complain
about 'that one compile defect I should

have found in my review!' Engineers have
the conviction and motivation to produce
high-quality software. Their attitude fun-

damentally changes."

CMU/SEI-2003-TR-014 45

"Although I have had some negative ex-
periences, on the whole, being involved in
the PSP/TSP has been very positive. I
have seen whole teams turn from bad to
great in terms of quality, productivity, and

morale. THIS STUFF CHANGES
PEOPLE'S LIVES. I know that's a little
heavy-handed, but I think if it is properly
implemented, TSP can become a way of
life for software engineers; of the six
members of our original TSP team, three
of us are now TSP launch coaches. And all
of us find ourselves using it even in our

private lives. Pretty impressive, huh?"

"It is so revolutionary that I remember the

exact date I was introduced to it."

"A more disciplined process allowed me
to do a better job, and allowed me to bal-
ance my job with other aspects of my life."

"Gives you incredible insight into per-

sonal performance."

"I thought I was a great programmer, and

had been told so throughout my career.
When I read the Discipline for Software
Engineering^^ book, I thought the data
presented in it was typical of average de-
velopers and mine would be much better
The course was a humbling experience. I
learned that I was as average as anyone

else."

"At the end of the class, we were talking

about what we had learned. One of the
engineers stood up and said "I don't have
twenty years of programming experience,

I have one year of experience twenty
times. Until this class I did not even know
what my performance was."

46

[Humphrey 95]

CMU/SEI-2003-TR-014

6.2.3 Realistic Plans/Schedule Performance

As we saw in the team described in Section 4.3, the team met their schedule commitment.
The team had the skills to put together a very detailed plan. And they had the skills to change
and adjust that plan when the plan was not working. They did not abandon the plan; they
changed it and constantly used it to guide their work. Therefore, they always knew where
they stood against their schedule goal.

This section focuses on how engineers are able to apply the planning and estimating skills
they learn in the PSP for Engineers course to meet schedule goals on TSP teams (see Figure
19).'*

PSP Level 2
Time Estimation/toe iracy

)n 20D

.| 160

100

SO

0

■{

■""^.v; * ' (' V <'^
>t ^ "j,,r V ■.iv '.?.'. / ''"^ A a • r
I,

r

i

r

4h
i

ill 4'. 1 1 1

» _<* /i» if ^V !<' „» ^* .» .

Estimation Accuracy V^lue

100

fO

w

TO

\:

»
20

ID'

Cumulitiv* ^mad Vilu*

/

-«-OMukVM FtaMd Valui

-^ am**** Pr*dk!M EvTwd
VakM

\^

Waaha

F/gure ^9; Realistic PSP and TSP Plans

"Probably tlie most impressive thing to

me about TSP was the time that another
team requested the services of one of my
engineers. My first impulse was to say,

'No way, I won't get my earned value!'
However, I decided to listen to the data
and see what we could do. Because of the
detailed plans made by TSP teams, I was
able to sit down with my engineer, zero out
his time for the six weeks the other project
wanted him, look at what happened to his
earned value and how that affected the

team earned value. I was then able to
look at the completion rate of the other
engineers and find an engineer who was
ahead of schedule. Working with those
two, we were able to determine what tasks
could be swapped from one person to an-
other and recalculate earned value based

on the changes. With the tasks moved and

EV recomputed, my project was still pro-
jected to meet schedule, so we agreed to
the engineer working for the other team

for six weeks. This had three major ef-
fects: (1) it taught us that data could be
used for a very practical application, (2) it
reinforced the team's faith in me as a team
leader, since I did not make a gut decision
but used data, (3) it improved team mo-
rale, since I was flexible enough to allow
the team members personal freedom as
long as their data supported it. By the
way, the whole effort took about 30 min-
utes and we did meet our schedule. That's
the power of collecting data at a personal

level and having an organized way to use
it!"

''* These figures are described in Appendix A and in Section 4.3.

CMU/SEI-2003-TR-014 47

"Our schedule reliability is now +/- ten
percent from -50/+200 percent and our
defect density at the team level has been
reduced by over 50 percent"

"One of my first projects as an embedded
systems programmer finished on the day
we planned to finish six months earlier. I
attribute the success to planning at a bet-
ter granularity and making full use of the
earned value tracking. The day we got
100% earned value was the day we

planned to get 100% value, and we as a
team celebrated like we had won a bas-

ketball game."

"Multiple projects in our organization
have been able to keep within their time
schedules (+/- three weeks) over a six-
month span. This is something we [had]
not been able to accomplish in the past.
This is one of the reasons that manage-
ment is very happy with the TSP process."

"Our plans are much more detailed and
all the involved developers understand
them. As a consequence, we deliver what

we planned, on time."

"Immediately after our launch, the team
leader had a death in the family and
needed to fly home. He was gone for two
weeks. As a result of the TSP, the whole
team fully understood what needed to be
done on the project, and the team never
missed a beat. Without the TSP launch, the
team probably would have only been half

as productive."

"...[TSP is a] transparent project man-

agement paradigm—everybody has a
common understanding of the plan and

everyone knows what is going on in the

project and where we are in the project at

any time."

"I liked the level of detail that went into
[the] initial plan, and the constant aware-
ness of the schedule. [It] allowed us to
make adjustments as the project went on,
instead of waiting for a major milestone."

"Measuring progress helps generate pro-

gress. "

"It provides better focus for the software
developer on tasks to be done."

"Our most important tool is the weekly
meeting. We make sure to make the meet-
ing data-centered. ENGINEERS LOVE
EARNING VALUE! This is important; we
ensure that an engineer's plan allows them

to earn value every week"

"At our post-mortem, our management
made the following comments about the
TSP: 'Realistic plans based on rigorous
statistical analyses,' 'Sustained pace
throughout the project,' and 'Increased

management confidence in project esti-

mates. '"

48 CMU/SEI-2003-TR-014

6.2.4 Commitment

What if someone built a detailed plan and no one followed it? People are often surprised that
TSP launch meetings are so tumultuous. But when people are getting ready to make a com-
mitment, they put a lot of energy into discussing and resolving issues. By the end of the
launch, the team has developed a detailed plan, and not only is each team member committed
to the plan, but each team member knows every other team member is also committed to the
plan. This helps build team cohesion and a commitment that sustains the team through diffi-
cult times. Each team member leaves the launch with a portion of the team plan that he or
she owns. This individual plan does not reside on the team leader's computer, or on a confer-
ence room wall, it belongs to the individual. The individual manages it, uses it, and changes
it, several times a day if necessary. The team then meets weekly, the individual plans are
consolidated into a team plan, and the team manages the team plan together. Figure 20
summarizes data from launch evaluation forms that ask about commitment to the plan.

B

120

100

80

60

o. 40

20-

98 98

, >

i Ln
1.5

^M
-A {/

"■' '\

■.y\
.■-'.!
. - «

;,. ii ',
-•"^?
:':l

I Yes

■ No

Are you committed to the
plan?

Do you bielieve the team is
committed to the plan?

Figure 20: Commitment to the Plan

"1 was launching a team. We had just

started meeting 8, and had started to put
together the presentation of our plan to
management. The team was primarily
composed of young engineers, with the
exception of Lisa, who had quite a bit of
experience at the organization. She had
been skeptical of the TSP and had not fully
participated in the launch meetings up to
that point. As we got into meeting 8,1

asked each engineer if they believed in the
plan. Each engineer said yes, until I got
to Lisa, and she said no. Lisa felt that
many of our estimates were too conserva-
tive. So we went back and spent 45 min-
utes re-examining the plan, but this time,

with the benefit of Lisa's knowledge and
participation. I think for the first time
Lisa understood what the TSP was all
about. Up to that point Lisa felt that once
we made an assumption and documented
it in the plan, the plan could not be
changed. Lisa now understood that the
plan was not rigid, that we could change

the plan whenever we learned more about
what we were doing, and that this was
actually encouraged. The team learned
an invaluable lesson about the importance
of having each and every team member
committed to the plan. This team ended

up meeting their schedule, and Lisa is now
one of the strongest proponents of TSP in
the organization."

CMU/SEI-2003-TR-014 49

"During one of my first team launches,
the team was discussing the risks to their

plan. I advised the team not to discuss
risks of ordinary living, such as if some-

one gets hit by a bus. We were about to
move on, when one team member said, 7
suppose I should mention that I've ac-
cepted a job with another company.' At
first I was taken aback, but then 1 realized
that the team was making a real commit-
ment to each other and this engineer could
not make that same commitment and
wasn 't comfortable pretending to do so.
In fact, this engineer later told me that the
launch made him disclose the fact that he

was leaving earlier than he would have
done otherwise, because he could not let
the team go ahead and plan as if he would

be there to help."

"Do NOT take over during the launches.
Coach and guide, but don't do anything
FOR the team. IF THEY DON'T CREATE
THE PLAN THEMSELVES, THEY WON'T
OWN IT AND IT WON'T BE
IMPLEMENTED!.' Take my word for this,
I am WELL-versed in how to do it incor-

rectly!"

"The first time, I worried that the team
would not jell. But as the launch pro-
gressed, the team jelled, and I learned not
to be nervous, and let them go."

"By the third day of the launch, it was
clear that the team leader was not fully
engaged with the team. The team was so
concerned that they discussed their con-
cerns with their launch coach. The launch
coach then had a heart-to-heart conversa-
tion with the team leader. It turns out that

the team leader was having personal
problems and had issues with the com-
plexity of the project. The team leader felt
that he would not be able to adequately
lead this effort and stepped down from his
position. The team was surprised, but they
supported their team leader's decision.
The team completed their launch and pro-

posed one member as team leader during
the management meeting. The team jelled

more than ever and the old team leader is
walking around with a smile on his face
for the first time in months."

"This really feels like a tight team."

"I feel included and empowered."

"It forces team coordination to talk about
and solve problems—there's no pigeonhol-

ing."

50 CMU/SEI-2003-TR-014

6.2.5 Minimum Schedules

TSP teams are not satisfied with just meeting schedule commitments. They want to create
the best products in the shortest period of time. TSP teams follow several strategies in order

to get minimum schedules.

Balanced Workloads

The first strategy discussed here is to balance workload among team members, so that no
team member becomes the "long pole" in the schedule and prolongs the entire project.
Figure 21 shows how schedules can be minimized when team members allocate tasks evenly
among themselves. The team was able to shorten the project schedule from over 40 weeks to
just over 20 weeks by re-allocating some of Engineer I's and Engineer B's work.

Unbalanced Team Workload

A "

c' -

-1

-

20 40 60

Schedule Weeks

Balanced Team Workload

A ^^B

C E"
1^: E"

G

,• SS-

■ Unbakinced

■ Balanced

20 40 60
Schedule Weeks

Figure 21: Balanced Team Workload

"During meeting 6, the team assigned
resources based on their typical special-
ties. This resulted in personal plans that
were completely unbalanced. The person
with the earliest plan was to finish at 6
weeks and the person with the longest
plan was to finish at 50 weeks, with every-
one else spread in between. The team
leader was worried about how he would
fix that. I told the team leader that the

team would figure it out and took him out
of the room. We returned about 45 min-

utes later to find the roomfiill of energy,
with 15 people gathered around white-
boards trading tasks and figuring things
out. The team had narrowed the imbal-

ance to a minimum of 20 weeks and a max
of 28 weeks. Our old planning methods
would not have found the load imbalance
until much later "

"At the beginning of the launch, the de-
sign marmger was convinced that only he
could do certain tasks. In meeting 6,
when it became clear that the design man-
ager was the long pole in the team sched-

ule, the design manager finnlly recognized

that he couldn 't be the only one to do
those certain tasks. He came up with an
approach where he would train other team
members to complete work that was cur-
rently assigned to him."

CMU/SEI-2003-TR-014 51

High-Quality Products into Test/Reduced Time in Test

Another strategy used by the TSP to minimize schedule is to focus on quality. Through care-
ful quality management, TSP teams are able to reduce the number of defects entering the
formal testing phases and thereby reduce the percentage of development time spent in formal
testing. TSP teams find that the extra time they spend in reviews and inspections is more
than made up for by the time saved during test. Figure 22 shows that because the team re-
moved defects early in the development cycle (although not as many as planned), the time
they spent in system test was minimized, thus minimizing the overall schedule.

Ottect Danrity by PhiM

.<* <^

Effort Distribution

<•' / y y " /• / y

Figure 22: Defect Removal Profile and Effort Distribution

"My first TSP-based team recently fin-
ished their system test. They had three sys-
tem test defects in 7400 lines of code. No
defects were code- or design-related; they
were either install or documentation—
each of which took about five minutes to
fix. System test took less than five percent
of the overall project effort."

"The system test engineers became con-
vinced that TSP was worthwhile when they
realized that they were going from track-
ing down software bugs in the lab to just
confirming functionality. Our first pro-
ject: certified with ten times increase in
quality with significant drop in cost to de-
velop. Follow-on project: certified with
NO software defects delivered to system
test or customer "

"The first TSP team I coached was sur-
prised when unit test was completed in
half a day. They said they had done a pro-
totype of this code before the project
started and it took 1.5 weeks to get it to
work well enough to see any results. They
have found only two defects since the code
has been integrated with the rest of the

software."

"Seventy-five percent reduction in defects
entering into integration testing through
the use of inspections and reviews during
the development process."

52 CMU/SEi-2003-TR-014

"Our team met both the dates and the re-
sult was defect-free in system and accep-
tance test. The principal software engineer

on this project said, 7 would like to offer a

brief endorsement of the TSP. I do NOT
think that we could have made these tight

deadlines without the use of the process.

My estimation is that we have saved two
to four calendar weeks in an eight-
calendar-week project because of using
the process. 1 think the team has been very
diligent in applying the principles in-
volved in the process, and we have reaped
the benefit in that we have discovered very
few integration issues.'Data shows that

the team achieved 78.5 percent yield and
that having to fix 190 code defects in test

would have significantly extended the

schedule."

"PSP really sells you on the idea about
finding defects early in the process. It
really does make a difference at the end.

We thought it wasn't going to work. But

we all became converts. In doing the

work, you are producing valuable data
along the way. We improved productiv-

ity. .. improved it greatly. I worried be-

cause 1 have seen too many people more
interested in the process than in the prod-
uct. You are finishing smaller products at
more regular intervals."

"The review and inspections across layers

help reduce cross-team applica-
tion/interface defects and security vulner-
abilities which may otherwise go un-

tested. "

"It was nice to be associated with a pro-
ject that had few defects."

CMU/SEI-2003-TR-014 53

6.2.6 Barriers to Success

Not all TSP implementations are successful. Unfortunately, the SET has not received data
from a team that has failed. We have data from projects that were cancelled midstream or
where teams were told to stop using the TSP when management sponsorship was lost. The
comments in this section show that the biggest risks with the TSP are the same risks associ-
ated with technology transition in general: lack of management sponsorship, introduction
costs, and resistance to change.

"When the senior manager left, we lost
our sponsorship for the effort because

there wasn 't any buy-in fi-om the Devel-
opment Manager."

"Manage your sponsor list. Our effort
has taken so long, I have only recently
realized that one by one, every sponsor
that had supported our TSP effort has
moved on to a different job—and it hap-
pened so slowly that I didn 't notice until
we had a problem."

"Many managers will fail in accepted
ways rather than fail trying something
new."

"It's extremely frustrating to see the bene-
fits and not be able to implement due to
management issues."

"While everyone is in 'full support'of get-
ting the software developers PSP-trained,
when it comes time to send them to class,

it is hard to get project relief or to get the
managers to release the developers to
come to class in the first place."

"We seemingly clearly show management

the benefits of TSP and how the training
time of three weeks^^ is paid back within

nine months. For instance, one project in
our company found zero defects in system

test and has yet to have a customer-
reported defect after several months of
usage. However, we still routinely get
back the comment "we just can't afford
three weeks training right now." How can
you not afford it if it's a wash in nine
months time and you 've reduced cycle
times from that point on?"

"Because of the high up-front cost, man-
agement is reluctant to enforce its use. I
think this will change shortly...at least I

hope so."

"There has been immense pressure to
shorten the course. Even with compelling
evidence of the benefits, the training time
is a seemingly insurmountable barrier If
there was some way to streamline the
course so that it could be completed in
two weeks, I think [that] would make a big

difference."

The PSP For Engineers course requires two weeks of time in class, and additional time outside
class to complete some programming assignments, and mid-term and final reports.

54 CMU/SEI-2003-TR-014

"The length of training time is a major
barrier. I'm trying to get people for a
second class right now. There was no tool
support that would carry PSPfrom the

classroom to on-the-job use. There were
some negative feelings from the first and

second classes that had led to a lot of
grass roots non-enthusiasm. Part of this

negative feeling is due to class material.
Part was due to lack of tools. Part was
due to poor teaching. Part was due to a
poor selection of students."

"Unable to gain initial commitment—very
hard to get people interested in actually
committing to try it due mainly to the per-

ceived disruption in ongoing projects for

the required training."

"Initial commitment is extremely difficult.

Lack of management support is primarily
based on the up-front investment (cost)
and time they have to go without their tech
staff on line."

"Time investment is accepted but logistics
of timing course offerings is a challenge."

CMU/SEI-2003-TR-014 55

6.2.7 Problems You Had With the TSP

As with any technology, there are always opportunities for improvement, and the TSP is no
exception. Here are the comments we received about the shortfalls of the TSP.

"TSP role managers were revised several
times without being able to have them
function properly."

"Management needs to be able to measure

TSP teams against other projects. Since

the other project are not measuring and

reporting anything, management doesn 't

understand how well the TSP teams have

done. I don't know the solution to this
problem."

"Earned Value is a great way to plan and
track development tasks, but is not as use-
ful for schedule-driven phases of a pro-
ject. When launching a new project
phase, look critically at the types of re-
porting that will go on, and guide the team

toward more or less dependence on EVvs.
PERT or Gantt. Never ignore either
earned value or schedule/dependencies,
but simply shift the emphasis depending
on the needs of the project.

"No tool support. SEI's TSP tool is not
sufficient at all."

"Some aspects are good (reviews and in-
spections. I am not yet sold on it."

"Easy-to-use and low-cost tools are im-
portant to get PSP off the ground. While
the TSP prototype tool is usable, SEI
really needs to get the requirements
document out to the community and em-

brace the development of tools. Without
good tools, it will be difficult to move

PSP/TSP forward "

"Currently, the most common issue is the

TSP spreadsheet. The developers are find-
ing that small mistakes in data entry can
cause a lot of grief (shared by coaches).
Getting a more robust tool would defi-
nitely help."

"Problems with using the TSP tool dis-
courage [the] user from recording defects
faithfully "

"Tool issues are preventing us from prop-

erly consolidating individual, team, and
organization data. Multiple data entry is
frustrating to practitioners."

56 CMU/SEI-2003-TR-014

6.2.8 General Comments

Not all anecdotes can be classifiei In this section, we have included general comments we

have received about the TSP. One thing that is obvious from these comments is that TSP

teams love data.

"The TSP has given the engineers in my
organization a common vocabulary. I first
saw it in the PSPfor Engineers course.
Exercise 4 in the course is the 'turning
point.' Up until then, most students are
operating by rote with very little under-
standing. This is to be expected, since
most engineers have never had any expo-
sure to process and they therefore do not
have a meaningfiil vocabulary with which
to express process concepts. By lec-

ture/exercise 4 they have learned enough
of a process vocabulary to be able to ex-

press themselves. They can also begin to

discuss the issues with each other—arui
they do. I find it very rewarding to watch

this transformation take place."

"The topic ofon-task hours was a point of
major discussion, both within the team
and in meeting 9. I showed the team
pages 58-61 o/Winning with Software^''
and they photocopied these as part of the

meeting 9 handout. The team was pleas-
antly surprised to find in meeting 9 that
their failure to meet the original deadline
was not a cause of management anger;

rather, it led to a fruitful discussion of
what was possible."

"We had almost 100% increases in pro-

ductivity. "

"Our organization's first PSP-based pro-

ject had 20 percent improvement in pro-
ductivity compared to historical average,
one of the lowest delivered defect densities
ever in this organization, and the best
schedule performance ever in this organi-

zation. "

"One project increased its delivered qual-
ity by 10 times and reduced its effort by 20
percent compared to a previous project."

"So far, the experience has been a very
positive one. The developers are finding it
a much better way to run projects. Man-
agement is seeing the benefits from much
improved schedule planning. The groups
that have managed to record their quality
data also seem to have produced quality
code. We are still struggling with some
groups to get their quality data. It appears

to be a worry that management will some-
how view them as writing defective code.
We have turned the argument around by
saying that if they do not record the defect
data, then we will assume that the bugs
were shipped (since the number caught is
far less than their quality plan suggested).
This has helped in a couple of the pro-
jects. Also, having management review the
functionality at the end of each cycle has

helped people focus on the job at hand."

[Humphrey 02]

CMU/SEI-2003-TR-014 57

"Much better alignment of the team to
management and customer goals.
(Unfortunately, I am unable to quantify.)"

"First project: four times defect reduction
in integration and test, doubled productiv-
ity, and shipped on time. Next project: 10
times reduction in integration and test,
doubled productivity, and doubled func-
tionality at the same time. Another pro-
ject: 5 times defect reduction in test,
shipped on time. Another project: 30 per-

cent increase in productivity in six months.
Another project: doubled task hours in

one year."

"During a postmortem, an individual
stated that the IRTL [Issue and Risk
Tracking Log] was a total waste of time
because none of the risks came true. I
reminded him that we spent considerable
time during each weekly meeting ensuring
that all were actively being worked. Since
no risks came true, the team should con-
sider the IRTL review to be a complete
success! The response was 'Oyeah!'"

"You actually get your money back after

1200 LOC."

"Quality was better by a factor of two.
Estimates were very good. Team spirit,
cooperation, dedication, and collabora-
tion; risk management was effective, the
launches worked, reviews and inspections
improved quality, daily meeting, team
visibility, and happy with integration test

effort."

"Expanded responsibilities of each team

member beyond 'just their development
work,' has resulted in better exchange of

ideas among the team members."

"A comment from one team member to-
wards the end of day 3 (meeting 6): 'I feel
that TSP has something for me as a devel-
oper. ' I think he meant that he originally
felt that TSP was merely a management

tool."

"The first TSP pilot in our organization

shows that productivity has increased by
17.5 percent when comparing with non-

PSP engineers. We had less data to come
to a conclusion regarding quality. So we
need another pilot."

"Regardless of how much complaining is
done over relaunching, we continue to use
it because time on task has improved by

twice over and defects in test have been
reduced by at least six times."

"I won't run a project any other way."

"A more disciplined process allowed me
to do a better job, and allowed me to bal-
ance my job with other aspects of my life."

58 CMU/SEI-2003-TR-014

"/ am a very creative person. I liken do-

ing software to an artist painting a pic-

ture, and so I still worry about the PSP
structure taking some of the fun and crea-

tivity out of the software process. PSP
tends to distill the repetitive measurable

tasks out of the creative and innovative
ones that occur early in the design phase.

The purpose of design is to provide an
early analysis that leads to products with
fewer of the more costly defects later. You

have to have a good design to get good .
code."

"We had two very successful TSPpilots
and then we lost our TSP sponsor In the

first pilot, it took us a little over half a day

to test each 1000 lines of code. In the
second pilot, it took us a little under Haifa

day to test each 1000 lines of code. In our
third project, without the TSP, we have

already spent over seven days to test each
1000 lines of code, we are still finding

defects, and have not finished testing yet."

"This is the hardest, most enjoyable, per-
sonally rewarding thing I have done out-

side of growing a family."

CMU/SEI-2003-TR-014 59

6.3 Anecdotes - Conclusion
The anecdotes presented in this section show how the TSP introduction strategy builds skills
and prepares a team for using the TSP, how the launch creates a cohesive team that is com-
mitted to the team goals, how the team develops a plan with the minimal schedules, and how
teams focus on quality throughout the project life cycle. Some problems faced by TSP teams
are also described. The anecdotes describe how people internalize their experiences with the
PSP and the TSP

60 CMU/SEI-2003-TR-014

7 Conclusion

We wrote this report to provide updated results on the use of the PSP and the TSP. We started
by describing the experiences of a first-time team to illustrate how the TSP creates an envi-
ronment where skilled engineers can apply disciplined methods to achieve schedule and qual-
ity goals. This team was able to achieve significant improvements on their first use of the
TSP. These impressive results were not atypical, as seen by data summarized in Section 5.
The individual perspective provided in Section 6 illustrates success from a personal point of
view. People like doing excellent work and the TSP enables them to do so.

At the surface, the PSP and the TSP seem exclusively like planning-driven, data-oriented
technologies. However, it is also the human interactions enabled by the TSP that allow indi-
viduals and teams to be successful. You see this same conflict in the balance between disci-
plined and creative work. People feel that discipline prevents them from doing creative
work, when in fact the opposite is true. The same holds true with teamwork and data. In or-
der for a team to jell, they need the data to manage then- routine tasks. In earlier sections of
this report, we presented figure after figure of project data. One would be mistaken to be-
lieve that it was this plethora of data that was the sole factor in team success. Besides data, a
major contributor to the success of all these teams was the commitment and ownership gen-
erated during the launch and sustained throughout the life of the project. It is the synergy that
is created when a team has a common goal and each and every person on that team under-
stands how his or her work and everyone else's work contributes to the achievement of that
goal. But what does synergy really mean? Synergy is when you are struggling and your
team is there to support you. Synergy is the recognition from your team when you succeed.
Synergy is the pride you feel when a team member shines or the satisfaction that comes from
helping a teannmate. We hope that we have presented both these aspects of the TSP in this
report: the measurable results produced and the non-quantifiable results experienced.

CMU/SE1-2003-TR-014 61

62 CMU/SEI-2003-TR-014

Appendix A: PSP Empirical Study
Replication

This appendix shows the preliminary findings from a replication of the Hayes and Over SEI
technical report investigating the impact of PSP on various aspects of individual engineer
performance [Hayes 97]. We did not attempt to reproduce the depth or breadth of the original
SEI technical report on this subject. Our goal was to reexamine the major hypotheses of the
earlier report using the same methodology as the original work. The most notable difference
between this and the original analysis is sample size: 1300 versus 300.

Generally, there were few deviations from the findings in the original Hayes and Over techni-
cal report. There are three exceptions. First, the original report found no statistical difference
between PSP levels 1 and 2 in size estimation accuracy. This difference is now significant.
Likewise, the original report found no statistical difference between PSP levels 1 and 2 in
effort estimation accuracy. This difference is now significant. Lastly, the original report
showed no statistical difference between PSP levels 0 and 1 and levels 0 and 2 of individual
changes in productivity. Both of these differences are now significant. Other than these three
exceptions, the analysis is in agreement with the original Hayes and Over results.

Introduction
Repeated measures Analysis Of Variance (ANOVA) was carried out on the same measures
originally investigated by Hayes and Over. These measures are believed to quantify many of
the important principles underlying the PSP. Further, they are representative of the substan-
tive changes in an individual engineer's performance brought about by PSP training. Like
the original technical report, the analyses below are conducted without regard to violations of
the assumptions underlying the repeated measures ANOVA model. In all cases, confurnatory
post hoc analysis was conducted to determine both the existence and extent of any violations.
Where violations of the ANOVA assumptions were found, all measures, with the exception of
pre-compile yield (as was the case in the original study) were transformed to better conform
to model assumptions. In all cases, transformed variables retained their significance, thus
confirming the original findings. In the case of yield, a non-parametric test, the Jonckheere-
Terpstra test for ordered differences among classes, was conducted (see page 75).

The remainder of this appendix is organized as follows. First, we present a visual "tour" of
the existing data. The available figure for each measure data is presented by assignment
number. In the sections that remain, following Hayes and Over, we present the primary re-

CMU/SEI-2003-TR-014 63

suits grouped by the measures (metrics) of interest. Each section begins by restating the
original hypothesis, followed by brief descriptions of the measure's selection criteria, the
measure itself, discussion of group trend, and results of the ANOVA and contrast analysis.

Descriptive Data

Assignment 1 8 9 10

Effort
Size
Defects

1312
1250
1305

1296
1297
1282

1280
1281
1268

1258
1259
1229

1240
1240
1218

1202
1202
1190

1131
1131
1103

1076
1075
1027

989 886
989 886
977 870

Table 13: Number of Engineers Reporting Totals by Assignment Number

ZE.5

zo.o

17.5

15.0 -

^ IE.5 1
c

n 10.0
t

7.5

5.0 -

2.5

0 -'■' 1 • r

2.5 5

T 1 1 • 1 I ■ I—

7.5 10 ie.5 IS 17.5 20

N

Figure 23: Distribution of Class Size

64 CMU/SEI-2003-TR-014

Assignment 1 2 3 4 5 6 7 8 9 10

Planning 1295 1289 1274 1256 1239 1202 1131 1075 988 881
Desinn 1285 1274 1267 1221 1219 1178 1122 1070 986 884
Design Review 5 5 9 5 25 30 1057 1043 963 875
Code 1311 1297 1281 1259 1240 1202 1131 1076 989 886
Code Review 7 12 15 18 40 42 1124 1070 988 883
Compile 1286 1267 1252 1227 1214 1169 1069 1005 950 852
Test 1310 1295 1281 1259 1238 1202 1128 1073 987 885

Table 14: Availability of Phase-Specific Effort by Assignment

Average Effort

1234567891

 Effort
— +1 StdDev

-IStdDev

Figure 24: Average Effort by Assignment Number

w 400
o
3 300
O)

i 200

"t 100

2 0

\,-
rr

Average Size

."!' ' 1 ' :'" -TlH

/\ /:

"—I—I—t—H 1 1—r^—1—I—

1234567891

 LOGS
 +1 StdDev

-IStdDev

Figure 25: Average Size by Assignment Number

CMU/SEI-2003-TR-014 65

Average Productivity

' Productivity
+1 StdDev
-IStdDev

1234567891

Figure 26: Average Productivity by Assignment Number

Average Defect Density

o
300
250

i 200

i 150

m 100
1 50
%
o 0

-50
—I—-I , 1 rT~if—r—1""^' I'"

1 2 3 4 5 0 7 -8 9 1

■DefDen
 +1 StdDev

-IStdDev

Figure 27: Average Defect Density by Assignment Number

Measure Sample Size
Size Estimation 954
Effort Estimation 954
Defect Density 907
Pre-Compile Defect Yield 908
Productivity 964

Table 15: Sample Size for Each Measure

66 CMU/SEI-2003-TR-014

Size Estimation

Hypothesis:
"As engineers progress through the PSP training, their size estimates gradually grow closer to
the actual size of the program at the end. More specifically, with the introduction of a formal
estimation technique for size in PSP level 1, there is a notable improvement in the accuracy
of engineers' size estimates" [Hayes 97].

Selection Criteria^^
Sample Size: N = 954

Common Selection Criteria

Rather than using an average estimate and actual LOC of three assignments within a PSP
level, the estimates and actuals are pooled by PSP level. This pooling serves to reduce the
magnitude of outUers and provides a data point tied to performance within a PSP level.
Even though data is pooled across PSP levels, only data from subjects submitting complete
data are retained (that is, data that can be used to compute each measure for all nine pro-
gramming assignments), thereby creating a completely balanced design as required by the
statistical model. This pooling technique is common to all remaining measures in this study
and is henceforth referred to simply as "pooling." Because PSP level 3 contains only one
programming assignment, assignment 10, it was excluded from all remaining analyses.

Size Estimation Selection Criteria

To compute the size estimation measure for each PSP level, an estimation accuracy value is
computed by summing the estimated LOC across the three assignments, summing the actual
LOC across the three assignments, and then computing the measure as specified below. Since
size estimates are not required for the first programming assignment, the pooled PSP level 0
data includes assignments 2 and 3 only.

Measure of Interest

Nominal

EstimatedSize - ActualSize

EstimatedSize

Transformed

EstimatedSize - ActualSize

ArgMax(EstimatedSize, ActualSize)

" All selection criteria in this appendix are adapted from Hayes and Over [Hayes 97].

CMU/SEI-2003-TR-014 67

Group Trend

PSP Level 0
Size Estimation Accuracy

80

9! 01 ■g c 40 -
3?
z ui 20

I
«!¥T*¥ Fi"i'F M^f i'l < I'^'i'T ■ri'^i"i^'i' I'I I'Ti r'r< I 'i°i"^i'M i i i i i i

Estimation Accuracy V^lue

c
? 100 f
lu
o
01

J3
E
3 z

50

0

PSP Level 1
Size Estimation Accuracy

■j" 3 s N a ■>■ s s 2 ?" a a 3 a ° a 3 a
Esti mation Accuracy Value

250

I 200-

c 150 lu
"6 -100
(V

E SO
3 I

PSP Level 2
Size Estimation Accuracy

Ml' I" I r"f >"'r"

* ft^ ** ft^ f? <»• ^^ .s^ .v^ N> *■ o* »*■ o^ <^ '^ <>■> *,^ <? «?■ ^

Esti miion Accuracy Value

Figure 28: Group Trends in Size Estimating Accuracy

68 CMU/SEI-2003-TR-014

ANOVA Analysis and Findings

Analysis comparing the pooled size estimation accuracy values for each PSP level showed a
highly significant difference across all three levels of the PSP (p < .0001). Contrast analysis
also revealed statistically significant differences between adjacent levels of the PSP. That is
between levels 0 and 1 (p < .0001) and levels 1 and 2 (p < .0001).

Effort Estimation
Hypothesis:
"As engineers progress through the PSP training, their effort estimates grow closer to the ac-
tual effort expended for the entire life cycle. More specifically, with the introduction of a sta-
tistical technique (linear regression) in PSP level 1, there is a notable improvement in the ac-
curacy of engineers' effort estimates" [Hayes 97].

Selection Criteria

Sample Size: N = 954

Data is pooled as outlined above. To compute the effort estimation measure for each PSP
level, an estimation accuracy value is computed by summing the estimated minutes across the
three assigiunents, summing the actual minutes across the three assignments, and then com-
puting the measure as specified below. Since size estimates are not required for the first pro-
gramming assignment, the pooled PSP level 0 data includes assigiunents 2 and 3 only.

Measure of Interest

Nominal

EstimatedMin - ActualMin

EstimatedMin

Transformed

EstimatedMin - ActualMin

ArgMax{EstimatedMin, AcutalMin)

CMU/SEI-2003-TR-014 69

Group Trend

PSP Level 0
Time Estimation Accuracy

150

Z i> 100
CD gj

§ c 50 H:

£_

i

.,* j."? .v* f? ?>-

Estimation Accuracy V^lue

PSP Level 1
Time Estimation Accuracy

150

° li 100
SI V n c
B -6
3 C
Z UI

50 -

'i

0 I M I 1 "I I I r' I f I ^"PTI^^P^^^^^^^^^^^^^^^^

Estim^ion /tecuraoy Value

PSP Level 2
Time Estimation Accuracy

m 200
ID
0)
.£ ISO ■

£
■s 100

!D
JO SO

Q 1*1 I' I 11 r I I I I I I iTi I

^ .-v^ ** **• !V^ * ^.* .--^ .v*- ^> ^ to* «!^ «>•■ o^ *= <:>•* o*- o* «?■ '•

Estim^ion Accuracy Value

Figure 29: Group Trend in Time Estimating Accuracy

ANOVA Analysis and Findings

Analysis comparing the pooled effort estimation accuracy values for each PSP level showed a
highly significant difference across all three levels of the PSP (p < .0001). Contrast analysis
also revealed statistically significant differences between adjacent levels of the PSP. That is
between levels 0 and 1 (p < .0001) and levels 1 and 2 (p < .0001).

70 CMU/SEI-2003-TR-014

Defect Density

Hypothesis:
"As engineers progress through PSP training, the number of defects injected and therefore
removed per thousand lines of code (KLOC) decreases. With the introduction of design and
code reviews in PSP level 2, the defect densities of programs entering the compile and test
phases decrease significantly" [Hayes 97].

Selection Criteria

Sample Size: N = 907

Data is pooled as outlined above. To be included in the analysis, total defect removal counts,
as well as defect removal counts for the compile and test phases, had to be available. In addi-
tion, actual program size (the denominator) also had to be available. An observation is in-
cluded as long as the total defects injected and removed differ by no more than 2.

IVIeasure of Interest

Nominal

TotalDefects

TotalNew & Changed LOC11000

Transformed

TotalDefects (

Log
TotalNew & Changed LOC /1000

Group Trend

Trends in Average Defect Density

140
8 120
^ 100
o 80 n

60
40

S o s
S 20

i ;, ' ' —■^v ' "•
: ' X, ' ' -
.'- , - \ • ' "

' ' '-—^' - -i ■" '
i ■ ~~~ •~ ^ ^
\ ' " '~e ^

-Test
-Total
Compile

1

PSP Level

Figure 30: Group Trends in Average Defect Density

CMU/SEI-2003-TR-014 71

PSP Level 0

MIMrmJim
S 8 S S ^ u5 <S S

in Q in o in
SI ^ S is ^

Defects/KLOC Removed in Test

PSP Level 1

8S8R888ffiSffi8SS§§ggg

Defects/KLOC Removed In Test

PSP Level 2

*)Ml>i»ftiftii.

Defects/KLOC Removed In Test

Figure 31: Group Trends in Average Defect Density

72 CMU/SEI-2003-TR-014

PSP Level 0

Defects/KLOC Removed in Compile

PSP Level 1

iiwihhiiiilliiii. ...i—i. ,j.
s » g

Defects/KLOC Removed in Compile
S § g g g §

PSP Level 2

Defects/KLOC Removed In Compile

Figure 31: Group Trends in Average Defect Density, cent.

ANOVA Analysis and Findings

Analysis comparing the pooled total defect density values for each PSP level showed a highly
significant difference across all three levels of the PSP (p < .0001). Contrast analysis re-
vealed statistically significant differences between PSP levels 1 and 2 (p < .0001) but not be-
tween PSP levels 0 and 1 (p=.27).

Analysis comparing the pooled defect density values for the test phase for each PSP level
showed a highly significant difference across all three levels of the PSP (p < .0001). Contrast

CMU/SEI-2003-TR-014 73

analysis also revealed statistically significant differences between adjacent levels of the PSP.
That is between levels 0 and 1 (p < .0001) and levels 1 and 2 (p < .0001).

Analysis comparing the pooled defect density values for the compile phase for each PSP level
showed a highly significant difference across all three levels of the PSP (p < .0001). Contrast
analysis also revealed statistically significant differences between adjacent levels of the PSP.
That is between levels 0 and 1 (p < .0001) and levels 1 and 2 (p < .0001).

Pre-Compile Defect Yield

Hypothesis:
"As engineers progress through the PSP training, their yield increases significantly. More
specifically, the introduction of design review and code review following PSP level 1 has a

significant impact on the value of engineers' yield" [Hayes 97].

Selection Criteria

Sample Size: N = 908

Data is pooled as outlined above. To be included in the analysis, defect injection and removal
counts for the pre-compile phases had to be available for all nine assignments.

Measure of Interest

Nominal

precompile defects removed

precompile defects injected

Group Trend

100
s
I 80

I 60
I 40

0

Trends in Average Defect Yield

. ^

 .—» V!-

■ ♦ 4;/

L—PL—--WL: :

■—Avg Yield
►- +1 Std Dev

-1 Std Dev

1

PSP Level

figure 32: Group Trends in Average Defect Yield

74 CMU/SEI-2003-TR-014

Assignment N Lower Quar- Upper Quar- Mean Maxinnum Median Std

Obs tile tile Dev

1 1312 0.00 0.00 5.20 100.00 0.00 15.78

2 1296 0.00 0.00 5.27 100.00 0.00 16.16

3 1280 0.00 0.00 5.16 100.00 0.00 14.22

4 1258 0.00 0.00 5.76 100.00 0.00 16.63

5 1240 0.00 0.00 5.82 100.00 0.00 16.66

6 1202 0.00 0.00 6.03 100.00 0.00 15.21

7 1131 33.33 75.00 52.80 100.00 56.25 29.75

8 1076 33.33 80.00 54.89 100.00 57.52 31.91

9 989 40.00 71.43 53.49 100.00 55.56 26.16

Table 16: Yields for Each Assignment

ANOVA Analysis and Findings

Analysis comparing the pooled pre-compile defect yield for each PSP level showed a highly
significant difference across all three levels of the PSP (p < .0001). Contrast analysis re-
vealed statistically significant differences between PSP levels 1 and 2 (p < .0001) but not be-
tween PSP levels 0 and 1 (p=.82). Lack of variation in yield between the assignments can be
seen both in Figure 32 and Table 16. Engineers are very poor at removing defects early in the
development phases for the initial assignments that compose PSP levels 0 and 1. The intro-
duction of formal code and design reviews after PSP level 1 seems to dramatically improve
yield performance.

As with the original analysis, yield presents a particularly thorny problem with respect to vio-
lation of the multivariate normality assumptions underlying the repeated measures ANOVA
multivariate test statistics. Specifically, PSP levels 0 and 1 are grossly non-normal, while
PSP level 2 is fairly well-behaved. Therefore, there is no single transformation that can trans-
form all the pooled data in the desired way.

Following Hayes and Over, we conducted a non-parametric analysis of the pooled yield
data—a Jonckheere-Terpstra test. The Jonckheere-Terpstra tests the null hypothesis that the
distribution of the response variable does not differ among classes. It is designed to detect
alternatives of ordered class differences. For such ordered alternatives, the Jonckheere-
Terpstra test can be preferable to tests of more general class difference alternatives, such as
the Kruskal-Wallis test. In the case of yield, the Jonckheere-Terpstra test rejects the null hy-
pothesis that the distribution of the response variable does not differ among PSP levels in fa-
vor of the alternative hypothesis of increasing order from PSP level 0 to PSP level 2 at sig-
nificant alpha level (p < .0001).

CMU/SEI-2003-TR-014 75

Productivity

Hypothesis:
"As engineers progress through the PSP training, their productivity increases. That is, the
number of lines of code designed, written, and tested, per hour spent increases between the
first and last assignments" [Hayes 97].

Selection Criteria

Sample Size: N = 964

Data is pooled as outlined above. To be included in the analysis, new and changed lines of
code and time spent completing the assignment had to be available for all nine assignments.

l\/leasure of Interest

Nominal

Total New & Changed LOGS

Total Time Spent 160

Transformed

Sqrt
Total New & Changed LOGS

Total Time Spent/60

Group Trend

50

40

30

t ♦ - - .

0.
« 20
o
S 10

0

Trends in Productivity

-Avg Productivity
- ♦- +1 Std Dev

-1 Std Dev

0 1 2

PSP Level

Figure 33: Group Trends in Productivity

76 CMU/SEI-2003-TR-014

PSP
Level

Mean Std Dev
Value
27.7506573 17.6703262
26.8389425 14.1803821
24.6242135 13.056082

Table 17 Average Productivity

ANOVA Analysis and Findings
Analysis comparing the pooled productivity values for each PSP level showed a highly sig-
nificant difference across all three levels of the PSP (p < .0001). Contrast analysis also re-
vealed statistically significant differences between adjacent levels of the PSP. That is be-
tween levels 0 and 1 (p =.01) and levels 1 and 2 (p < .0001). In general, the direction or
"sign" of these differences is the same as between adjacent means. In this case, productivity
is shown to decrease across PSP levels, and this decrease, while small, is statistically signifi-
cant.

Repeated Measures ANOVA

The primary statistical technique used to test the impact of PSP training in this report is the
repeated measures ANOVA. This technique is well suited for a situation in which measure-
ments are taken repeatedly on the same subjects. The following scenario describes one of the
motivations for use of this statistical model.

In the study of the effect of a training course, a researcher may wish to compare
scores on a pretest with scores on a test administered after training. Differences be-
tween these two test scores (given a host of other experimental conditions) are then
attributed to the effectiveness of the training. In order to make a generalizable state-
ment from such a study, individual differences must be accounted for before the two
sets of measurements can be meaningfully compared. To simply state that the average
post-test score for the group is greater than the average pretest score could overlook
the possibility that the majority of subjects did not change at all, but one or two sub-
jects scored significantly higher on the post-test than they did on the pretest.

By performing the statistical test on the average change of the individuals (rather than the
change in group average), the repeated measures ANOVA provides a more rigorous analysis
of data collected over time from a single group of individuals. This additional level of preci-
sion, however, places more stringent requirements on the data collection and interpretation

process.

CMU/SEI-2003-TR-014 77

78 CMU/SEI-2003-TR-014

Appendix B: Survey Questions

A survey of PSP instructors and TSP coaches was conducted over the Web in April 2002.
The survey contained questions about experiences with teaching and implementing the PSP
and the TSP. Fifty-four out of a possible 184 people responded. The results from the survey
are used throughout this report, and some of the results are summarized and presented in this
section.

Survey Questions
The survey asked questions about three areas: facts and figures about the TSP, the experi-
ences of the respondents, and the respondents' organizations. The following is a summary of
some of the questions on the survey:

• for each type of course, the number of courses taught, and the number of students taught
by each respondent

• lessons learned for the PSP and TSP

• frequently cited story used when talking about the PSP and TSP (favorite anecdote, prob-
lematic situation)

• barriers experienced

• successes achieved

• notes on tailoring

• organization's background

CMU/SEI-2003-TR-014 79

PSP Usage
Figure 34 represents the responses received to the following question:

How would you describe your organization's current usage of PSP? Please select one.

• not applicable (consulting/training only)

• no longer using

• in the planning stages

• pilots in progress

• implementing beyond pilots

If you selected "no longer using," please briefly describe the reasons.

4
1 1

!

T-^^X 14

■■ ' ' ■ ' .-1. " x>\ 1 a consult

■ no longer using

apian

a pilot

■ beyond pilot

D blank

■ n/a
P f

8

Figure 34: PSP Usage

80 CMU/SEI-2003-TR-014

TSP Usage
Figure 35 represents the responses received to the following question:

How would you describe your organization's current usage of TSP? Please select one.

• not applicable (consulting/training only)

• no longer using

• in the planning stages

• pilots in progress

• implementing beyond pilots

If you selected "no longer using, "please briefly describe the reasons.

B consult

■ no longer using

opian

D pilot

■ beyond pilot

Q blank

■ n/a

Figure 35: TSP Usage

CMU/SEI-2003-TR-014 81

Types of Organization
Figure 36 shows the responses received to the following question:

How is your organization best described? (Please select one)

• Department of Defense or military

• Defense, military, aerospace contractor

• Other government agency or contractor

• Commercial, e.g., health, pharmaceutical, finance, insurance, telecommunications,
transportation, manufacturing (please specify)

• Other (please specify)

■ DoD, military

■ defense contractor

D other government contractor

D commercial

■ other

Figure 36: Organization Types

82 CMU/SEI-2003-TR-014

Types of Software
Figure 37 shows the responses received to the following question:

What is your organization's primary type of product?

• Commercial shrinkwrap

• In-house development

• Maintenance

• Other (please specify)

■ shrinkwrap

■ inhouse development

D maintenance

D other

Figure 37: Software Product Types

CMU/SEI-2003-TR-014 83

Types of Projects
Figure 38 shows the responses received for the following question:

What is your organization's primary type of work? (Please select one)

• Software engineering

• Systems engineering

• Both software and systems engineering

• Other (please specify)

13 /'^

B software engineering

B systems engineering

Dboth

D other

20
-^^

Figure 38: Project Types

84 CMU/SEI-2003-TR-014

References

All URLs are valid as of the publication date of this report.

[Ciurczak 02] Ciurczak, John. 'Team Software Process (TSP) Experiences in the
Foreign Exchange Market" SEPG 2002 (CD-ROM). Phoenix, AZ,
February 18-21, 2002. Pittsburgh, PA: Software Engineering Listi-
tute, Carnegie Mellon University, 2002.

[Davis 01] Davis, Noopur; Humphrey, Watts; & McHale, Jim. "Using the TSP
to Accelerate CMM-Based Software Process Improvement." SEPG
2001: Focusing on the Delta (CD-ROM). New Orleans, LA, March
12-15, 2001. Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2001.

[Ferguson 99] Ferguson, P.; Leman, G; Perini, P; Renner, S.; & Seshagiri, G Soft-
ware Process Improvement Works! (CMU/SEI-99-TR-027,
ADA371804). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University, 1999. <http://www.sei.cmu.edu
/publications/documents/99.reports/99tr027/99tr027abstract.html>.

[Hayes 97] Hayes, W. & Over, J. W. The Personal Software Process (PSP): An
Empirical Study of the Impact of PSP on Individual Engineers.
(CMU/SEI-97-TR-OOl, ADA335543). Pittsburgh, PA: The Software
Engineering Institute, Camegie Mellon University, 1997.
<http://www.sei.cmu.edu/publications/documents/97.reports
/97tr001/97tr001abstract.htmJ>.

[Humphrey 95] Humphrey, Watts S. A Discipline for Software Engineering. Read-
ing, MA: Addison-Wesley, 1995.

CMU/SEI-2003-TR-014 85

[Humphrey 00] Humphrey, W. The Personal Software Process^" (PSP^")
(CMU/SEI-2000-TR-022, ADA387268). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports

/00tr022.html>.

[Humphrey 02] Humphrey, Watts S. Winning with Software: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.

[Janiszewski 01] Janiszewski, Steve & Myers, Chuck. "Making Haste Deliberately."
SEPG 2001: Focusing on the Delta (CD-ROM). New Orleans, LA,
March 12-15, 2001. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2001.

[Jones 95a] Jones, Capers. Patterns of Software Systems Failure and Success.

Boston, MA: International Thomson Computer Press, 1995.

[Jones 95b] Jones, Capers. Backfiring: Converting Lines of Code to Function
Points. IEEE Computer 28, 11 (November 1995): 87-88.

[Jones 96] Jones, Capers. Applied Software Measurement. New York, NY:
McGraw-Hill 1996.

[Jones 00] Jones, Capers. Software Assessments, Benchmarks, and Best Prac-

tices. Reading, MA: Addison-Wesley, 2000.

[McAndrews 00] McAndrews, D. The Team Software Process^: An Overview and
Preliminary Results of Using Disciplined Practices (CMU/SEI-
2000-TR-015, ADA387260). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 20(X).
<http://www.sei.cmu.edu/publications/documents/00.reports
/00tr015.html>.

[Morgan 93] Morgan, Ben B., Jr.; Salas, Eduardo; & Glickman, Albert S. "An
Analysis of Team Evolution and Maturation." Journal of General
Psychology 120, 3: 277-291.

86 CMU/SEI-2003-TR-014

[Narayanan 02] Narayanan, Sridhar. "People - Process Synergy." SEPG 2002 (CD-
ROM). Phoenix, AZ, February 18-21, 2002. Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, 2002.

[Pracchia 03] Pracchia, Lisa & Hefley, Bill. "Accelerating SW-CMM Progress
Using the TSR" SEPG 2003: Assuring Stability in a Global Enter-
prise (CD-ROM). Boston, MA, February 24-27, 2003. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University,
2003.

[Riall 02] Riall, Cary & Pavlik, Rich. "Integrating PSP, TSP, and Six Sigma."
SEPG 2002 (CD-ROM). Phoenix, AZ, February 18-21, 2002. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2002.

[Schwalb 03] Schwalb, Jeff & Hodgins, Brad. 'Team Software Process for Main-
tenance Projects." SEPG 2003: Assuring Stability in a Global En-
terprise (CD-ROM). Boston, MA, February 24-27, 2003. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003.

[SEL 93] Condon, S.; Regardie, M.; Stark, M.; & Waligora, S. Cost and
Schedule Estimation Study Report (Software Engineering Labora-
tory Series SEL-93-002). Greenbelt, MD: NASAGoddard Space
Flight Center, 1993.

[Serrano 03] Serrano, Miguel A. & Montes de Oca, Carlos. "Using TSP in an
Outsourcing Environment." SEPG 2003: Assuring Stability in a
Global Enterprise (CD-ROM). Boston, MA, February 24-27, 2003.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2003.

[Sheshagiri 02] Sheshagiri, Girish. "It's Hard To Believe Unless You Do It." SEPG
2002 (CD-ROM). Phoenix, AZ, February 18-21,2002. Pittsbuigh, PA:
Software Engineering Institute, Carnegie Mellon University, 2(X)2.

[Webb 02] Webb, Dave. "Managing Risk with the Team Software Process."
SEPG 2002 (CD-ROM). Phoenix, AZ, February 18-21, 2002. Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2002.

CMU/SEI-2003-TR-014 87

88 CMU/SEI-2003-TR-014

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of Information is estimated to average 1 hour per response, including the time for reviewing instmctions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Sen/Ices, Directorate for infonnation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington, VA 22202-4302, and to the Office of
Management and Budget, Papenrork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

REPORT DATE

September 2003
TTTLE AND SUBTITLE

The Team Software ProcessS" (TSPS") in Practice: A Summary of
Recent Results

3. REPORT TYPE AND DATES COVERED

Final
5. FUNDING NUMBERS

F19628-00-C-0003

AUTHOR(S)

Noopur Davis, Julia Mullaney
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2003-TR-014

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
HanscomAFB,MA01731-2116

10. SPONSORING/MONrrORING AGENCY

REPORTNUMBER

ESC-TR-2003-014

11. SUPPLEMENTARY NOTES

12A DISTRlBUTION/AVAIUBILrrY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUnONCODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Most software organizations are facing critical business needs for better cost and schedule management, effec-
tive quality management, and cycle-time reduction. The Team Software Process addresses these critical busi-
ness needs. This report provides results and implementation data from projects and individuals that have
adopted the TSP. The results show that TSP teams are delivering essentially defect-free software on schedule,
while improving productivity. These data can be used for benchmarking and planning, motivation, lessons
learned, and other guidance to those currently using the TSP or considering its use. The report also illustrates
adoption experiences of practitioners in the field, including TSP team members, their managers, and their
coaches and instructors.
14. SUBJECTTERMS

TSP, PSP, software process improvement, defect-free software, cy-
cle-time reduction, software development schedule management

15. NUMBER OF PAGES

104

16. PRICE CODE

17. SECURrrYCLASSIRCATION

OF REPORT

Unclassified

18. SECURfTY CLASSinCATlON OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Fomi 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

